ham Talto
 magazine

from satellite communications focus
on
communications
technology

The World's Most Compact Mobiles

ICOM's three ultra compact mobiles...the IC-27A 2-meter, the IC-37A 220 MHz and the IC-47A 440 MHz ... are the smallest mobiles available.

Even in such a small package the 25 watt mobiles contain an internal speaker which makes them fully selfcontained and easy to mount.

Size. The ICOM compacts measure only $51 / 2^{\prime \prime} W \times 112^{\prime \prime} \mathrm{H} \times$ $7^{\prime \prime} \mathrm{D}$ (IC-47A is $9^{\prime \prime}$ deep). which allows them to be mounted in various "compact" locations. Yet the compacts have large operating knobs which are easy to use in the mobile environment.

More Features. Other IC-27A/37A/47A standard features include a mobile mount, IC-HM23 DTMF mic with up/down scan and memory scan, and internally adjustable transmit power. An optional IC-PS45 slim-line external power supply and IC-SP10 external speaker are also available.

32 PL Frequencies. The IC-27A/37A/47A come complete with 32 PL frequencies.

9 Memories. The compact mobiles have 9 memories which will store the receive frequency, transmit offset, offset direction and PL tone. All memories are backed up with a lithium battery.

Speech Synthesizer. To verbally announce the receive frequency, an optional UT-16 voice synthesizer is available.

Scanning. The ICOM compacts have four scanning systems...memory scan, band scan, program scan and priority scan. Priority may be a memory or a VFO channel...and the scanning speed is adjustable.

Stacking Mobile Mounts. The IC-27A/37A/47A can be stacked to provide a three band mobile station. Each band is full featured and will operate even when another band is in use.

The IC-27A/37A/47A provide superb performance in the mobile radio environment. See them at your local ICOM dealer.

First in Communications

TOO GOOD TO BE TRUE?

\star MORSE \star BAUDOT \star ASCII \star AMTOR \star PACKET

FIRST FIVE MODE DATA CONTROLLER

The Pakratt model PK-64 by AEA is the world's first computer interface that offers Morse, Baudot, ASCII, AMTOR and Packet all in one box (hardware and software included) at a price many competitors charge for Packet alone (from \$219.95 Amateur net). Do not let the low price fool you; coming from any other company but AEA it WOULD be too good to be true. The PK-64 works with virtually any voice transceiver. The Pakratt is the easiest of any to hook up and have operating in just a few minutes.

In Packet mode, the PK-64 offers virtually all the features of every other Packet controller on the market, plus many important features left out by others due to cost constraints. For example, we have included a hardware HDLC, true Data Carrier Detect (DCD), multiple connect with up to ten stations simultaneously and full implementation of version 2.0 of the AX. 25 protocol.

Because the PK-64 was designed specifically for the Commodore 64 (or C-128 and SX-64) computer, we have been able to do many things not economically feasible with general RS-232 interface controllers. For ex-
ample, the Pakratt includes true split screen operation with on-screen status indicators and an on-screen tuning indicator.

ENHANCED HFM-64 MODEM OPTION

The standard PK-64 will operate all modes with a phase-lock-loop (PLL) detector roughly equivalent to all popular packet modems in the marketplace (except we have included extra filtering). The enhanced HFM-64 modem option offers true independent dual channel filtering with A.M. detection (like the famous CP-100 Computer Patch ${ }^{T M}$). The enhanced HFM-64 option also offers a hardware LED tuning indicator (like the CP-100) and a front panel variable threshold control for setting maximum sensitivity under various band ,conditions. We recommend the HFM-64 option for anyone keenly interested in weak-signal heavy-QRM HF operation. For anyone desiring to operate FM RTTY with the standard North American tone pair or CW receive, the HFM-64 is required. The HFM-64 is field installable with no soldering or test equipment required.

WORKS WITH THE POPULAR C-64 COMPUTER

AEA designed the PK-64 around the
low-cost C-64 because of the special architecture features making it especially suited to Amateur Radio applications. The C-64 should not be viewed as a mainframe, but rather a very economical accessory to your data communications system. Many owners of expensive computers such as IBM, TANDY, APPLE, KAYPRO, ATARI, etc., are now buying the low cost C-64 and dedicating it to their operating position. They simply cannot find software for their machine that even approaches the power and user friendliness of the PK-64. Plus, think of the convenience of having only one controller and keyboard to go from one mode to another without having to redo cabling!

The PK-64 is so complete that all you need to do is wire up a microphone connector to the end of a cable (provided) and you are ready to go. There is no need to track down special terminal software, cabling or even a power supply. It all comes with the PK-64. So do not be the last on your block to own the most exciting new product in years. See the PK-64 at your favorite dealer or write for our specification sheet now.

Prices And Specifications Subject To
Change Without Notice Or Obligation

Power-Full...70 Watts! TM-2570A/ 2550A/2530A 2

Sophisticated FM transceivers

Kenwood sets the pace again! The all-new " 25 -Series" brings the industry's first compact 70-watt 2-meter FM mobile transceiver. There is even an auto dialer which stores 15 telephone numbers! There are three power versions to choose from: The TM-2570A 70-watt model, the TM-2550A for 45-watts, and the 25-watt TM-2530A.

- First 70-watt FM mobile (TM-2570A)
- First mobile transceiver with telephone number memory and autodialer (up to 15 telephone numbers)
- Direct keyboard entry of frequency
- Automatic repeater offset selection according to the ARRL 2-meter band plan a Kenwood exclusive!
- Extended frequency coverage for MARS and CAP (142-149 MHz; 141-151 MHz modifiable)
- 23 channel memory for offset. frequency and sub-tone - Big multi-color LCD and back-lit controls for excellent visibility
- Front panel programmable 38-tone CTCSS encoder includes 97.4 Hz (optional)
- 16-key DTMF pad, with audible monitor
- Center-stop tuning-another Kenwood exclusive!
- Frequency lock switch
- New 5-way adjustable mounting system
- Unique offset microphone connector -relieves stress on microphone cord

- HI/LOW Power switch (adjustable LOW power)
- Compact DIN size

DCL

Introducing...
Digital Channel Link
Compatible with Kenwood's DCS (Digital Code Squelch), the DCL system enables your rig to automatically QSY to an open channel. Now you can automatically switch over to a simplex channel after repeater contact! Here's how it works.

The DCL system searches for an open channel, remembers it, returns to the original frequency and transmits control information to another DCLequipped station that switches both radios to the open channel. Microprocessor control assures fast and reliable operation. The whole process happens in an instant!

Optional Accessories

- TU-7 38-tone CTCSS encoder
- MU-1 DCL modem unit
- VS-1 voice synthesizer
- PG-2K extra DC cable
- PG-3A DC line noise filter
- MB-10 extra mobile bracket
- CD-10 call sign display
- PS-430 DC power supply for TM-2550A/2530A
- PS-50 DC power supply for TM-2570A
- MC-60A/MC-80/MC-85 desk mics.
- MC-48 extra DTMF mic. with UP/DWN switch
- MC-42S UP/DWN mic
- MC-55 (8-pin) mobile mic. with time-out timer
- SP-40 compact mobile speaket
- SP-50 mobile speaker
- SW-200A/SW-200B SWR/power meters
- SW-100A/SW-100B compact SWR/power meters
- SWT-1 2 m antenna tumer

Actual size front panel

KENWOOD

TRIO-KENWOOD COMMUNICATIONS 1111 West Walnut Street
Compton Californa 90220

ham
 radio
 magazine

contents

10 introducing satellite communications Joe Kasser, G3ZCZ
24 wide-range power meter Rudolf E. Six, KABOBL

31 grounded-grid amplifier parasitics Richard Measures, AG6K
38 universal oscillator circuit Robert H. Fransen, VE6RF
42 ham radio techniques Bill Orr, W6SAI

47 computer control of ICOM R-71, 271, 471 and 751 radios
Richard Bisbey, NG6Q
59 AC line transient protection Jerry Hinshaw, N6JH
67 modifying the Trio-Kenwood TS-930S
Roger J. Hoffman, WB9BXT
75 practically speaking:
Keep it cool
Joe Carr, K4IPV
83 VHF/UHF world:
33 cm - our newest band
Joe Reisert, W1JR
107 a new class of directive antennas R.P. Haviland, W4MB

125 the Guerri report
Ernie Guerri, W6MGI
one year, $\$ 22.95$; two years, $\$ 38.95$; three United States: Canada and other countries ivia surface maill: one vear, $\$ 31.00$ two years, $\$ 55.00$ three vears $\$ 74.00$

126	advertisers index	122 ham mart
and reader service	104	ham notes
9 comments	112 new products	
99	DX forecaster	6
118	presstop	
		4
feflections		
		45
	short circuits	

dual roles

When is an "amateur" not an "amateur?" One possible definition is when he applies his knowledge and uses it in a technical trade such as Engineering or Science. At the recent RF Technology Expo 86 (January 30-February 1), thousands of similarly interested technical individuals got together for three days in Los Angeles to discuss the latest developments in the RF communications field. The technical exhibition, sponsored by of design, featured technical forums in which 79 papers on HF through microwave subjects were presented and an exhibition by 133 manufacturers and their representatives who displayed their wares, from crystal oscillators through interactive computer-aided design applications and software.

Just a brief scan of the titles of some of the papers presented at the show reveals topics of considerable interest to Radio Amateurs. For example, Eyring Research Institute showed the proper way to evaluate HF antennas on a large scale. Believe me, their antenna "test bed," instrumentation, and procedures had many in the audience on the edge of their chairs, taking in every word for possible use - on a more limited basis, perhaps - back at their own QTH. Actually, many of the engineers who remained after the end of this session in order to dig for more facts turned out to be Radio Amateurs who happened to be engineers as well. It was difficult to tell which aspect of their experience elicited more questions - the "amateur" or "commercial."

Which brings me to my main point. The engineers and scientists at the show were, in many cases, Radio Amateurs who, over the years, had been able to combine their interest and avocation to the mutual benefit of both. That a connection exists was further indicated by several speakers who quite independently mentioned that they find both if design and ham radio good sources of HF communications information.
"But wait a second," you say, "what do our interests have in common with the topics discussed at the show? To answer that question, take a look at this abbreviated list of some of the topics covered:

Choosing the right crystal and oscillator
High efficiency power amplifiers
$I M$, phase noise, and receiver dynamic range
High-pass filter design
Increasing the bandwidth of helical antennas
How to make simple test equipment
New low-power SSB circuits
Designing combline and interdigital bandpass filters
How to bias RF and microwave transistors
Wideband modules using FETs
Practical wideband RF power transformers, splitters, and combiners
RF power amplifier design
Understanding RF transistor data sheets
1-kW solid-state L-band amplifier (What about you 1296 fans?) Broadband HF antenna testing
ACSSB and SSB communication receiver testing
RF circuit design using interactive computer-aided graphics
Wideband high dynamic range front-ends
High-Q inductors using powdered iron cores

If you're interested in reading any of the 79 papers, the complete set ${ }^{*}$ has been bound into a 2 -inch thick compendium that weighs in at approximately 4 pounds. (I should know, I carried mine around with me for the entire three days.)

If you find some of these "engineering" topics of special interest, let me know . . . perhaps some of the authors would be interested in writing for ham radio.

I truly believe that as a result of intense interest and hard work on the part of many Radio Amateurs, great strides have been made in the most technically demanding fields of communications and will continue to be made by those individuals sharing this dual role.

Rich Rosen, K2RR
Editor-in-Chief

[^0]
KENWOOD

The Sma
 Kenwood's advanced technology brings you a new standard in pocket/handheld transceivers!

- Higlror low power. Choose 1 watt highenough to "hit" most local repeaters; or a batterysaving 150 mW low.
- Pocket portability! Kenwood's TH-series HTs paick conventent, reliable performance in a package so small, it slips into your shirt pocket! It measures only 57 (2.24) W x 120 (4.72) H 28 (1.1) D mm (inch) and weighs 260 g $(.57 \mathrm{lb})$ with PB-21.
- Expanded frequency coverage (TH-21AT/A). Covers 141.000-150.995 MHz in 5 kHz steps, includes certain MARS and CAP frequencies.
TH-31AT/A: 220.000 224.995 MHz in 5 kHz steps.

- Easy-to-operate, functional design. Three digit thumbwheel frequency selection and handy top-mounted controls increase operating ease.
- Repeater offset switch. TH-21AT/A: $\pm 600 \mathrm{kHz}$. simplex.
TH-31AT/A: -1.6 MHz . reverse, simplex. TH-41AT/A: $\pm 5 \mathrm{MHz}$ simplex
- Standard accessories Rubber flex antenna, earphone, wall charger. 180 mAH NiCd battery pack, wrist strap.

- Quick change, locking battery case

The rechargeable battery case snaps securely into place. Optional battery cases and adapters are available.

- Rugged, high impact molded case.

The high impact case is scuff resistant, to retain its attractive styling, even with hard use. See your authorized Kenwood dealer and take home a pocketful of performance today!

Optional accessories:

- HMC-1 headset with VOX
- SMC-30 speaker microphone
- PB-21 NiCd 180 mAH battery
- PB-21H NiCd 500 mAH battery
- DC-21 DC-DC conventer for mobile use
- BT-2 manganese/alkaline battery case
- EB-2 external C manganese/alkaline
battery case
- SC-8/8T soft cases
- TU-6 programmable sub-tone unit
- AJ-3 thread-loc to BNC female adapter
- BC-6 2 -pack quick charget
- BC-2 wall charget for PB-21H
- RA-8A/9A/10A StubbyDuk antenna
- BH-3 belt hook

KENWOOD

TRIO-KENWOOD COMMUNICATIONS 1111 West Wainut Street
Compton, Callforna 90220

prestoop
 de W9JUV

SIGNIFICANT IMPACT ON THE "ELECTRONIC CDMMUNICATIDNS PRIVACY ACT" appeared likely as a result of the January 30 House subcommittee meetings in Washington. Strongly supporting the bill were two spokesmen for the telephone system and a Tandy representative -- though Tandy's speaker was teamed with AFRL and the Association of North American Radio Clubs (ANARC) in the apparent belief Tandy would oppose the bill as scanner supporters. However, Tandy came out in favor of it from their position as a cellular telephone supplier.

ARRL Shifted From Its Previous Position That Exempting Amateur Radio satisfied League concerns; Perry Williams, WIUED, while approving the exemption, pointed out that Amateurs -and others, as well -- have many legitimate reasons to listen across the radio spectrum and the bill would make many such activities illegal. Probably the most telling testimony came from ANARC's Terry Colgan, WDSGWC, who not only pointed out various fallacies in the bill when applied to radio communications but demonstrated how effective and inexpensive available encryption devices are. (An article on the hearing will appear soon in Ham Radio.)

THE COMIC EQOK PROMOTION FOR AMATEUR RADIO being funded by the Amateur Radio industry is moving along well, ARRL's Dave Sumner, K1z2, reported at a February 7 meeting during the Miami Tropical Hamboree. The group decided to proceed with a story line based on the popular "Archie and His Friends" strip, with final approval in the near future.

Lack of Well-Qualified Amateur Radio Instructors is a major problem in effective training and growth, Gordon West, WBGAOA, told the group. He proposes a program, possibly through the ARRL, to promote instructor training. Dealer invalvement in Amateur Radio promotion was also considered. The next industry group meeting is set for April 24 in Dayton.

MODULATED CW IS NOW PERMITTED ON 10 METERS, but only from $29.5-29.7 \mathrm{MHz}$. Acting on PR Docket $85-168$ at its February 19 meeting, the FCC authorized F2A emission on the band's top portion in order to enable repeaters to identify using Morse code (effective date: April 23).

THE "PACIFIC AREA COORDINATION ASSOCIATION". is a newly formed regional UHF-UHF effort to promote wide-area coordination. Drganizer WAGDFJ has sent invitations to coordinators west of the Continental Divide; send SASE to Box 23183 , Pleasant Hill, CA 94523 for details.

Mississippi Will Retain 15 kHz Spacing On 2 Meters: top end. Southern California is now the only area of the country to use inverted 15 kHz splits on 2 meters, following a shift to "upright" splits by repeaters in western Colorado.

Northern California Could Shift To 20 kHz Spacing on $146-148 \mathrm{MHz}$ and still accomodate all existing repeaters in its area, the Northern California Relay Council (NARC) reports. The plan will be consider ed at NARC's April 5 meeting in Sacramento.

NARC Has Also Proposed A 33 -cm Gand Flan that is essentially identical to the ARRL's interim plan developed by the VUAC. A push seems to be building within the VUAC to come up with a satisfactory final plan for the new 902-928 MHz band.

Repeater Coordination And Spectrum Management Will Ee. The Subjects of an on-going workshop during the Dayton Hamvention weekend. Location and other details of this crucial activity may not make the printed program, so check with Hamvention officials upon arrival. Notice of Inquiry adopted January So. A total surprise to the GMRS soposed by the FCC in a organized users, the proposal apparently stemmed from a synthesis of the GMRS's own proposal to expand its utility through new technologies and from the Commission's desire to establish a new short-range quality radio service for the general public. After previous efforts to find spectrum for such a service in the $900-\mathrm{MHz}$ band fell flat, the FCC apparentiy decided that GMRS's two $200-k H z$ slots in the 460 MHz band was an acceptable alternative.
"Fersonal Directed Communications" Is The Apparent Direction of the FCC's thinking, employing "user transparent" sophisticated portable equipment "designed to control users" actions automatically." They also ask whether "one-way" (paging) should be included, and for suggestions as to how much and what kind of automation should be included.

GMRS Licensees And Users Are Extremely Upset, and understandably so, with their well established system of repeaters, mobiles, and portables -- very active in personal, business and public service communications -- threatened with extinction.

Comments On FR Docket $86-38$ Are Due At The FCD May 30 , and the Reply Comments June 30.
User-Frogrammable Land Mobile Radios May Be Banned as a result of a Notice of Proposed Rule Making approved by the Commissioners at their January 30 meeting. In response to complaints of interference from radios reprogrammed to unauthorized frequencies, PR Docket 86-37 would prohibit the FCC from type accepting Part 90 radios operating above 25 MHz that have external frequency control. Though it's known at the FCC that many synthesized Amateur radios are reprogrammable to non-Amateur frequencies, fart 97 equipment wasn't included.

21 SCHOLARSHIPS FOR STUDENTS WITH GENERAL OR HIGHER LICENSES are available from the Foundation For Amateur Radio. Write FAR, 6903 Rhode Island Ave., College Park, MD 20740.

KENWOOD

Reach Higher... TR-50

1.2 GHz FM transceiver.

As the Amateur bands become more and more crowded, hams seek higher and higher frequencies to "get away from it all." Here's a chance to experience "something different"1200 MHz !

- LCD frequency readout with S/ RF/battery check bar meter
- Battery set and charger - External power cable for base or mobile operation
- 1 watt output
- 5 memory channels - Odd-split operation on memory channel 5
- Programmable scanning
- 16-key DTMF hand

microphone

- 1/4-wave sleeve antenna on an 8 -position adjustable mount 210°

- Offset reverse switch - RIT
- Repeater offset switch (-20 MHz)

*The perfect portable for microwave mountain-topping!

Optional accessories: - VB-50 Power amplifier (10 watts)

- MB-3 Mobile mounting bracket - PB-16 NiCd battery set
- TU-6 Sub-tone unit
- MC-55 (8-pin) Mobile microphone with time-out timer - SWC-4 1.2 GHz directional coupler for SW-200A/200B and SW-2000 meters - SC-10 sott case

Ultra-Compact

 TM-201A

The Kenwood TM-201A

 2-meter transceiver is the smallest and lightest FM unit available!- 25-watt output, with HI/LO power switch
- Dual digital VFOs
- 5 memories plus "COM" channel, with lithum battery back-up
- Memory scan/programmable band scan
- Prionity alert scan
* Highly visible yellow LED frequency display
- High performance recervel transmit
- External high quality speaker supplied
- 16-key autopatch UP/DOWN microphone
- Repeater offset ($\pm 600 \mathrm{kHz}$ and simplex) and teverse switch Optional accessories - TU- 3 programmable CTCSS encoder - KPS-7A fixed station power supply
- MC-55 (8-pin) mobile micro-
phone with time-out timer
- SP- 40 compact mobile speaker
- SW-100 A/B SWR/power meter - SW-200 A/B SWR/power meter
- SWT- 12 -m antenna tunet
- FC-10 frequency controller

More information on the TR-50 and TM-201A is available from authonzed Kenwood dealers

Times Change - Quality Remains 1970's:
TR-7400A Revolutanaty new
cortuent the tust 25 wall. 2 meter
synthesizes PM transcever
1980's:
TM-201A Flevalutonary ite detimed Dual dpital VFos, 25 watts 5 memo Dual diptar vFos. 25 watts 5 memo-

TRIO-KENWOOD COMMUNICATIONS

MFJ 24 HOUR LCD CLOCKS

These MFJ 24 hour clocks make your DXing, contesting, logging and SKEDing easier, more precise Read both UTC and local time at a glance with the MFJ-108, \$19.95, dual clock that displays 24 and 12 hour time simultaheously. Or choose the MFJ-107, $\mathbf{\$ 9 . 9 5}$
single clock for 24 hour UTC time. Both are mounted in a brushed aluminum frame. feature huge easy-to-see $5 / 8$ Inch LCD numerals and a sloped face that makes reading across-theshack easy and pleasant.
RTTY/ASCII/AMTOR/CW MFJ-1229 COMPUTER INTERFACE $\$ 179.95$

Everything you need is Included for sending and recolving RTTY/ASCII/CW on a Commodore 64 or VIC-20 and your ham rig. You get MFJ's most advanced somputer interface, software on tape and ail cables. Just plug in and operate.
The MFJ-1229 is a general purpose computer interface that will never be obsolete An internal DIP switch. TTL and RS-232 ports lets you adapt the MFJ-1229 to nearly ahy home computer and even operate AMTOR with appropriate software.
A crosshalr "scope" LED tuning atray makes accurate tuning fast, easy and precise.
You can transmit both narrow (170 Hz) and wide $(850 \mathrm{~Hz})$ shift while the variable shift tuning lets you copy ahy shift ($100-1000 \mathrm{~Hz}$) and any speed (5-100 wpm, 0-300 balud ASCII).
Automatic threshoid correction and sharp multipole active filters give good copy under severe QRM, weak signal and selective fading.
There's an FM (IImiting) mode for easy trouble -free tuning that's best for general use and an AM (non-llmiting) mode that gives superior performance under weak signals and heavy QRM.
A handy Normal/Reverte iwitch eliminates retuning while checking for inverted RTTY.
An extra sharp 800 Hz CW filter really separates the signals for excellent copy.
$121 / 2 \times 121 / 2 \times 6$ Inches. Uses floating 18 VDC or 110 VAC with MFJ-1312, \$9.95.

MFJ PORTABLE ANTENNA

MFJ's Portable Antenna lets you operate 40, 30, $20,18,15,12,10$ meters from apartments, motels, camp sites, vacation spots, any electrically cleat location where space for full size ahtenna is a problem.
A telescoping whip (extengs 54 in .) is mounted on self-standing $51 / 2 \times 63 / 4 \times 21 / 4$ inch Phenolic case. Built-in ahtenna tuner field strenght meter 50 feet coax. Complete mul -band portable antenna system that you can ee nearly anywhere 300 watts PEP

MFJ-162
$\$ 79.95$

You can read hour, minute, second, month and day and operate them in an alternating time-date display mode. You can also synchronize them to WWV for split-second timing. Both are quartz controlled for excellent accuracy

MFJ ANTENNA BRIDGE MFJ-204B

Now you can quickly optimize your $\$ 79.95$ antenna for peak performance with this portable, totally self-contained antenna bridge that you can take to your antenna'site-no other equipment is needed.
You can determine if your antenna is too long or too short, measure its resonant frequency and antenna resistance to 500 ohms. It's the easiest and most convenient way to determine ahtenna performance avall able today to anyone. There's nothing else like it and only MFJ has it. Bullt-in resistahce brifge, null meter and tunable oscillator-driver ($1.8-30 \mathrm{MHz}$). Uses 9 V battery. $4 \times 2 \times 2$ inches.

REMOTE ACTIVE ANTENNA

The authoritative "Worid Radio TV Handbook" rates the MFJ-1024 as "a first-rate easy-to-operate active antenna ... Quiet. with excellent dynamic range and good galn ... Very low noise factor ... Broad frequency coverage ... the MFJ1024 is an excellent choice in an active antenna*" 54 Inch remote active antenna mounts outdoor awdy from electrical noise for maximum signal and minumum noise pickup. Often outperforms longwir hundreds of feet long. Mount anywhere-atop howes, buildings, balconies, apartments, ships.
U, with any radlo to receive strong clear signals fro all over the world. 50 KHz to 30 MHz . High dyr, mic range eliminates intermodulation. Inside contol unit has 20 dB attenuator, galn control. Switch 2 receivers and auxiliary or active ahtenna. "On" LED. $6 \times 2 \times 5$ in. 50 ft . coax. 12 VDC or 110 VAC with MFJ-1312, \$9.95. MFJ-1024 $\$ 129.95$

200 WATT VERSA TUNER

MFJ's smallest 200 watt
Versa Tuner
matches coax. random wires and balanced
 lines from 1.8 thru 30 MHz . Works with all solid state and tube rigs. Very popular for use between transceiver and final amplifier. Efficient alr-wound inductor gives more watts out. $4: 1$ balun, $5 \times 2 \times 6$ in

MFJ-108
-195
MFJ-107
$\$ 995$

23.59 MFI 24 HOUR LCD CLOCK

They are battery operated so you don't have to reset them after a power fallure, and battery operation makes them suitable for mobile and portable use. Long life battery included. MFJ-108 is $41 / 2 \times 1 \times 2$ in. MFJ-107 is $21 / 4 \times 1 \times 2$ in.

ROLLER INDUCTOR TUNER

Meet the 'Versa Fumer W', the sompact roller Inductor tuner that lets you run up to 3 KW PEP and match everthing from 1.8 to 30 MHz .
Designed to match the new smalier rigs, the MFJ-989 is the best roller inductor tuner produced by MFJ. Our roller inductor tuner features a 3-digit turn counter plus a spinner knob for precise inductance control for maximum SWR reduction. Just take a look at an these other great features! Bullt-In 300 watt, 50 ohm dummy load, bullt-In $4: 1$ balun and a built-In lighted meter that reats SWR and forward and reflected power in 2 ranges (200 and 2000 watts). Accuracy $\pm 10 \%$ full scale. Meter light requires 12 VDC. 6 position antenna switch. $103 / 4 \times 41 / 2 \times 15$ inches.
MFJ "DRY" DUMMY LOADS

MFJ's "Dry" dummy loads are air cooled-no messy oll. Just right for tests and tast tune up. Noninductive 50 ohm resistor in aluminum housing with SO-239. Full load to 30 seconds, de-rating curve to 5 minutes. MFJ-260 (300 watt), SWR 1.1:1 to $30 \mathrm{MHz}, 1.5: 1,30-160 \mathrm{MHz}, 21 / 2 \times 21 / 2 \times 7$ in. MFJ262 (1 KW), SWR $1.5: 1$ to $30 \mathrm{MHz}, 3 \times 3 \times 13$ inches.

MFJ ELECTRONIC KEYER

MFJ-407
$\$ 69.95$

MFJ-407 Deluxe Electronic Keyer sends lamblc, automatic, semi-auto or manual. Use squeeze, single lever or strarght key. Plus/minus keying. 8 to 50 WPM. Speed, weight, tone, volume controls. On/Off. Tune, Semi-auto switches. Speaker. RF proof. $7 \times 2 \times 6$ inches. Uses 9 V battery, $6-9 \mathrm{VDC}$ or 110 VAC with AC ađapter, MrJ-1305, $\$ 9.95$.

MFJ ENTERPRISES, INC. Box 494, Mississippi State, MS 39762

ORDER ANY PRODUCT FROM MFJ AND TRY IT-NO OBLIGATION. IF NOT SATISFIED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (less shipping). - One year unconditional guarantee - Made in USA - Add $\$ 5.00$ each shipping/handling - Call or write for free catalog, over 100 products.

TO ORDER OR FOR YOUR NEAREST DEALER, CALL TOLL-FREE

800-647-1800

Call 601-323-5869 in Miss. and outside continental USA Telex 53-4590 MFJ STKV

MosterCard

spreadsheets for EME

Dear HR:
I enjoyed KE6ZE's informative article on EME ("EME-link Calculator Program," February, page 70). By a very odd coincidence I used the same equation from the ARRL Handbook to illustrate the convenience of spreadsheet programs for difficult calculations in an article in the same month's QST.

I hope that those readers who can compare David Engle's program written in BASIC with my speadsheet template will comment on the relative merits of the two approaches. It is, I think, important for hams to show leadership in matters of this sort which test techniques of immediate importance for technology.

My prejudice, of course, is that the spreadsheet is faster, allows for easier correction of errors, and has more versatility in printing results, than programs written in traditional programming languages.

I would be pleased to hear your readers' opinions.

Dick Ward, KC8OH
East Detroit, Michigan

understanding
 telephones

Dear HR

Thank you for the many articles such as "Understanding Telephones'" (by Julian Macassey, N6ARE), which appeared in the September issue.

Please do not assume we should know it. Print it.

Owen Zweiger, KD7WL McMinnville, Oregon

propagation disks available

Dear HR:

Response to my VHF propagation articles (July, 1985 and January, 1986) has been surprising, with dozens of hams requesting my program on disk for the Commodore 64. Because of requests from owners of other computers, I now have a working version ready for the IBM-PC.

I will supply a disk with the complete program (VHF through L-Band) in an IBM-PC format for $\$ 8.00$.

Lynn Gerig, WA9GFR

Route 1
Monroeville, Indiana 46773

cable comments

Dear HR:

Joe Reisert's column, "VHF/UHF World," in the October, 1985, issue of ham radio, is one of the best synopses on coaxial cable that I have read in Amateur publications, and, for that matter, in industry publications in some time. My sincerest compliments and congratulations. It was obvious that W1JR made some extra efforts in trying to document and assemble the information.

Two comments that I should like to make with respect to his article are not a reflection of my current job description and/or position. Rather, they are a reflection of my past experience as a product engineer with specific responsibilities of developing and obtaining MIL-SPEC qualification on coaxial cables.

On page 89, Joe indicates avoiding the contaminating types of jackets at all costs.
Yes, I agree with his basic position ("Don't be penny-wise and poundfoolish") but at the same time, his position does cost the average Amateur Radio Operator some unnecessary dollar expenditures. The difference between contaminating and noncontaminating jackets is the amount of plasticizer in the vinyl compound, which then provides flexibility at low
temperature extremes. It has been my experience in laboratory environments with so-called contaminating jackets that circulating ovens of 120 degree C (which is more than adequate temperature to drive out plasticizers) after seven days shows only a minimal amount of plasticizer migration. Outside of the laboratory environment, I personally have not experienced plasticizer migration problems with coax, both buried and fully exposed to the elements. After eight to 10 years of service, no attenuation increases.

At the same time, I have examined many pieces of coaxial cable in which plasticizer migration and/or contamination has been submitted as the cause of high attenuation. To date I have not seen a piece of coaxial cable in which that has been the cause of high attenuation in real-life operation. It has always been water and moisture getting into the cable. Water and moisture entry most commonly come about from inadequate sealing at the connector ends of the cable and/or cuts or pin holes caused by abrasion to the jacket. Yes, I see W1JR's point - and I have heard the myth many, many times throughout my active days as an engineer and in my current position as well.

One other small picky comment is in the last part of his article on page 91. He indicates that CATV transmission line is typically specified up to 350 MHz . This typical specification has to do only with structural return loss, which is a test for periodicity, which causes frequency suck-out. His advice is quite proper, then, to test it at the frequency of interest before installing it, but specifications up to 350 MHz have nothing to do with power handling capabilities and/or attenuation characteristics.

Once again, as an active and involved Amateur Radio Operator for better than 25 years, a tip of my hat for a fine article.

Ronald L. Steir, W9ICZ Marketing Director Belden Electronic Wire and Cable
Richmond, Indiana 47375

introducing satellite communications

Basic information to get you started

Do you want to access a new Amateur band that's always open when it's supposed to be? A band that doesn't fade away without warning, that makes DX contacts sound like locals, and has no skip zones?

Listening to, or working through Amateur communications spacecraft isn't difficult, but most newcomers simply don't know how to go about it properly. Not sure of what they're doing, they usually achieve disappointing results; deciding that the amount of effort invested must be so much more than the results achieved, they give up and go back to their regular haunts, where they can usually at least find someone to talk to. This is a shame, because satellites have come of age and commercial equipment is as readily available for the satellite bands as for the regular HF or VHF bands. You can buy or roll your own, but in either case - just like on 20 meters or the other HF bands - you have to have some knowledge of what's going on if you're going to get the maximum enjoyment out of the equipment.

terminology

A communications satellite is basically a repeater in the sky. It receives signals transmitted up from the ground on one Amateur band and retransmits the same signals down to the earth on a second Amateur band. It's part of a communications link between two Amateur stations on the ground as shown in fig. 1; signals on their way up to the satellite are said to be uplinked by stations on the ground while the corresponding signals coming down from the satellite are being downlinked. As the satellite orbits the earth it passes over different locations; the point immediately
beneath the satellite at any time is called the subsatellite point.

The area of the earth's surface that the satellite can "see" depends on its altitude; the higher it is, the more it can see. A commercial communications satellite in a high altitude over the equator can see about one third of the earth's surface. A satellite at a low altitude sees much less.
Any station that the spacecraft can see, can see the spacecraft. When a station can see the spacecraft, it is said to be in range. Thus any two stations in range of the satellite at the same time are said to have a window into the satellite and can communicate through it.

Niost orbits are elliptical rather than circular. The highest point above the surface of the earth in the orbit is called the apogee; the lowest point of that same orbit is the perigee.

Even though the orbit of the satellite is fixed, the earth rotates beneath it. The time it takes for the satellite to travel once around its orbit from the place where the sub-satellite point crosses the equator to the next time the sub-satellite point crosses the equator going in the same direction is called the period of the orbit. When the sub-satellite point has returned to the equator, the point on earth that was previously below it will have moved away because of the rotation of the earth; consequently, a new location will be beneath it. The number of degrees of longitude that have passed by during this time is known as the orbital increment (see fig. 2). The first orbit of the day is known as the reference orbit.

Earth stations will see different parts of different orbits as shown in fig. 3. The azimuth, or horizontal bearing and elevation angle to the spacecraft, will change with the orbit. The spacecraft will appear to rise above the horizon when it enters the range of the ground station. The time at which the spacecraft rises above the horizon is called Acquisition Of Signals, or

By Joe Kasser, G3ZCZ, P.O. Box 3419, Silver Spring, Maryland 20901

fig. 1. Satellite communications path. Station A is transmitting (uplink). Signals are received by the satellite and re-transmitted down to station B (downlink).

AOS. The position of the satellite in the sky as seen by the ground observer will change as it passes along its orbit, rising higher and passing across the sky, getting lower, and then finally setting on the horizon. The time at which it sets beneath the horizon of the ground station is known as Loss of Signals, or LOS.

The path traced by a satellite in the sky as seen by a particular ground station will vary according to the type of orbit. The path traced by a satellite in a circular orbit will usually approximate a section, or chord, of a circle. The path traced by a satellite in an elliptical orbit will depend on the apogee and perigee of the orbit and how close the observer is to the subsatellite point.

characteristics of satellite signals

In order to copy signals from satellites, we first need to know a little about the types of signals we're trying to receive. At any particular time, an observer on the ground may see the satellite in any direction with respect to the horizon (azimuth) and at any altitude between the horizon and a point directly overhead lelevation). This means that signals from various satellites arrive at a receiving station from any angle in any direction.

Radio waves are generated in a polarized manner. Conventional Amateur station antennas may generate vertically or horizontally polarized signals, depending on the position of the antenna with respect to the

fig. 2. Looking down on the earth from the satellite showing track of spacecraft on surface (subsatellite point). Range circles are drawn as ellipses on rectangular (map) projection. Circles overlap to give mutual access window on orbit \mathbf{N} +1 between points 6 and 7.

MAKE CIRCUIT BOARDS THE NEW, EASY WAY

WITH TEC-200 FILM

JUST 3 EASY STEPS:

- Copy circuit on TEC-200 film using any plain paper copier
- Iron film on to copper clad board
- Peel off film and etch

satisfaction guaranteed convenient $81 / 2 \times 11$ size
5-Sheets for \$3.95 10 sheets only $\$ 5.95$

The MEADOWLAKE Corp.
Dept. B, P.O. Box 497
Northport, New York 11768

LEARN ALL ABOUT
 TROUBLESHOOTING MICROPROCESSOR-BASED EQUIPMENT AND DIGITAL DEVICES

Attend this 4 -day seminar and master the essentials of microprocessor maintenance Gain a firm under standing of microprocessor fundamentals and learn specialized troubleshooting techniques. Fee is $\$ 745.00$

CURRENT SCHEDULE

- Chicago, IL - April 15-18
- Cincinnati, OH - April 21-24
- Greensboro. NC - April 29-May 2
- Milwaukee. WI - May 13-16
- Kansas City, M0 - May 20-23
- Denver, C0 - June 3-6

MICRO SYSTEMS INSTITUTE

Garnett, Kansas 66032 (913) $898-4695$

ground. If the radiating elements are horizontal, the antenna is said to be generating horizontally polarized signals; conversely, if the elements are vertical, the antenna is vertically polarized. The same polarization also holds for reception. Thus, vertical antennas receive vertically polarized signals best and horizontal antennas receive horizontally polarized signals best. True vertically polarized antennas will copy little or no horizontally polarized signals. Two-meter and other VHF/UHF FM antennas are vertically polarized, while base stations working SSB/ CW use horizontal antennas. This is because automobile antennas are vertically polarized, and the mobile stations put weak signals into horizontal antennas. In the early days of mobile radio communications, Amateurs fitted "halo" antennas on their cars to send and receive horizontally polarized signals in order to be compatible with the base stations. When the mobiles using FM began to outnumber

The RC-850 Repeater Controller just got a whole lot smarter.

Our new Version 3 software makes the best repeater controller EVEN BETTER.
The autopatch now supports remote telephone lines linked by radio, so that you can extend your autopatch coverage to match your RF coverage. You can have autopatch even if you can't get a phone line at your site. The 250 autodial numbers meet the needs of even the largest groups, with up to 35 digit storage for MCl and Sprint.
The easy-to-use Electronic Mailbox lets you include phone numbers, times, or frequencies as parts of messages. And it's so smart, it'll leave you a message if you miss a reverse patch, or if an alarm condition occurs.
Selective call and signalling capabilities range from two-tone sequential to numeric display paging, so you'll always be available. And its voice response metering is enhanced to continuously store low and high readings - so you can find out how cold it gets, how high the reflected power reads . . . and when.
Of course, a controller so feature-packed gives you secure control. Individual user access codes, with user callsign readback, can control access to selected functions to completely prevent horseplay.
ACC's amateur radio controllers are anything but "amateur". They're used by the U.S. Army, Navy, Forest Service, and other government and commercial users around the country. But, of course, you'll also find them on the leading amateur radio repeaters in North America and abroad.
There's never been a better time to upgrade your repeater system with an ACC controller, unmatched anywhere in quality, sophistication, and performance, with documentation and support to match.
Please call or write now for the rest of the story on all our repeater products, including controllers, digital voice storage units, and other Touch-Tone control products.
You'll be GLAD you did.

fig. 4. Some factors affecting satellite communications.
the fixed stations, there was no further need to use horizontal polarization and verticals became the rule. Nowadays, any base station that wants to use FM has to use vertical polarization.

On the HF bands both types of antennas are used interchangeably and everyone manages to work everybody. This is because the polarization of the radio waves changes as the signals pass through the ionosphere. A process known as Faraday rotation rotates the polarization of the signals. The signal as received on the ground is not entirely vertically or horizontally polarized and as such may be copied at somewhat lower signal strength on any antenna. Perhaps the good performance of quad antennas is due to their having both vertical and horizontal elements. When conditions in the ionosphere are changing, the received signals may appear to fade - i.e., get weaker and stronger as the plane of polarization is rotated by the ionosphere.

Satellite orbits are outside the ionosphere, which means that signals from the spacecraft are affected by the ionosphere in a manner similar to that which affects conventional terrestrial signais: the polarization of their signals changes. Conventional contacts tend
to use the same part of the ionosphere. The ionosphere is not a constant layer above the earth, of course, but is instead made up of patches, or clouds. Since the satellite is moving, its uplink and downlink signals will pass through different parts of the ionosphere at different times, and the effects of the ionosphere on the signals will differ as time passes, as shown in fig. 4.

Not only does the ionosphere refract radio waves and change their polarization, it may also attenuate signals or even absorb them. As the spacecraft travels along its orbit, it may be spinning or tumbling, or the satellite itself may shield the on-board antenna from the receiving station. Because of the limitations of its equipment, the transmitter on the space vehicle is transmitting at a relatively low power - less than 10 watts output. Consequently, signals from satellites may arrive at the ground from any direction in azimuth or elevation, with any polarization, and at any signal strength (usually very weak). All these may, and usually do, vary as a function of time.

an ideal satellite receiving antenna

The ideal antenna for copying satellite signals should be rotatable in azimuth and elevation in order to cope with all the possible directions from which signals may arrive. It must be immune to changes in polarization if it is to cope with horizontal, vertical, and in-between polarization caused by Faraday rotation in the ionosphere. It must also have a reasonable amount of gain in order to cope with the fading in the already weak signals generated at the satellite.

Vertical and horizontal polarization are two kinds of linear polarization. Radio signals can also be circularly polarized. A circularly polarized antenna will respond equally to horizontally or vertically polarized signals that is, changes in the plane of polarization will not be detected. Circular polarization also comes in two kinds, left-hand and right-hand (clockwise and counter-clockwise). To compound the problem, lefthand circularly polarized signals are not well received on righthand circularly polarized antennas and vice-versa.

antennas in common use on 10 meters

Figure 5 lists the commonly used bands in the Amateur Satellite Service. The most commonly used downlink bands are 10 meters, 2 meters and 70 cm . The first band combination that most people try is the 10 -meter downlink and the 2 -meter uplink commonly known as Mode A. This is because they usually have 10 -meter capability in their stations and can thus attempt to copy the satellite without adding too much equipment.

Under New Ownership

American made RF Amplifiers and Watt/SWR Meters of exceptional value and performance.

-5 year warranty \bullet prompt U.S. service and assistance

RF AMPLIFIERS

2 METERS-ALL MODE

B23 2 W in $=30 \mathrm{~W}$ out
(useable in: $100 \mathrm{~mW}-5 \mathrm{~W}$)
B108 10W in $=80 \mathrm{~W}$ out
$(1 \mathrm{~W}=15 \mathrm{~W}, 2 \mathrm{~W}=30 \mathrm{~W})$ RX preamp
B1016 10W in $=160 \mathrm{~W}$ out $(1 \mathrm{~W}=35 \mathrm{~W}, 2 \mathrm{~W}=90 \mathrm{~W}) \mathrm{RX}$ preamp B3016 30W in $=160 \mathrm{~W}$ out (useable in: $15-45 \mathrm{~W}$) RX preamp (10W $=100 \mathrm{~W}$)

$220 \mathbf{M H z}$ ALL MODE

C106 10W in $=60 \mathrm{~W}$ out
($1 \mathrm{~W}=15 \mathrm{~W}, 2 \mathrm{~W}=30 \mathrm{~W}$) RX preamp
C 1012 10W in $=120 \mathrm{~W}$ sut
$(2 \mathrm{~W}=45 \mathrm{~W}, 5 \mathrm{~W}=90 \mathrm{~W})$ RX preamp
C 22 2W in $=20 \mathrm{~W}$ out
(useable in: $200 \mathrm{~mW}-5 \mathrm{~W}$)
RC-1 AMPLIFIER
REMOTE CONTROL
Duplicates all switches, 18 ' cable

WATT/SWR METERS

- peak or average reading
- direct SWR reading MP-1 (HF) 1.8 .30 MHz MP-2 (VHF) 50.200 MHz

430-450 MHz ALL MODE
D24 2 W in $=40 \mathrm{~W}$ out
($1 \mathrm{~W}=25 \mathrm{~W}$)
D1010 10W in $=100 \mathrm{~W}$ out
$(1 \mathrm{~W}=25 \mathrm{~W}, 2 \mathrm{~W}=50 \mathrm{~W})$

Available at local dealers throughout the world.

- 136

NEW 24 Page Buyer's Guide With Guaranteed Lowest Prices

- Explains all about FREE 100 channel Satellite TV and how to shop for an earth station!
- Lists GUARANTEED LOWEST PRICES...we will not be undersold, save 30-50\% over local dealer prices!
- Tells how to easily and quickly Install-Your-Own earth station and save $\$ 400$ or more!
- Shows how to demonstrate and sell earth stations from your home and earn extra money!

uniden Panasonic

 galcoa eawnmeThe new SATMAN Buyer's Guide is a necessity for any prospective or current earth station owner who wants to save big money on name brand satellite products and also earn some extra money. Buy direct, Do.It Yourself, and save with SATMAN. Toll free ordering. no sales tax (IL only), major credit cards accepted, huge in-stock inventories available, and fast UPS shipping anywhere in U.S. Check with SATMAN before you buy.... He will not be undersold! Call now for your free 24 page SATMAN Buyer's Guide.

1-800-4-SATMAN

1-309-692-9582 Illinois

1. ASSIGNMENTS

10	METERS	29.3	-	29.55	MHz
2	METERS	145.8	-	146.08	MHz
70	CENTIMETES	435.	-	438.08	MHz

2. SATELLITE TRANSPONDERS

The data supplied on AMSAT - OSCARs 6 - 8 is for historic purposes as the spacecraft are no longer operational.

CURRENTLY ACTIVE

| AMSAT - OSCAR 10 B | $435.05-435.15 \mathrm{MHz}$ | $1.45 .95-145.85 \mathrm{MHz}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| AMSAT - OSCAR 10 L | $1269.05-1269.85 \mathrm{MHz}$ | $436.95-436.15 \mathrm{MHz}$ | | |
| RS -5 | | A | $145.91-145.95 \mathrm{MHz}$ | $29.41-29.45 \mathrm{MHz}$ |
| RS -7 | A | $145.96-146.00 \mathrm{MHz}$ | $29.46-29.50 \mathrm{MHz}$ | |

FUTURE (PROPOSED) SPACECRAFT

The RS spacecraft have been ground tested and are due for launch in 1986.

| FUJI -1 | A | $145.85-145.95 \mathrm{MHz}$ | $29.40-29.50 \mathrm{MHz}$ |
| :--- | :--- | :--- | :--- | :--- |
| FUJI -1 | M | $1267.55-1267.75 \mathrm{MHz}$ | $436.06-435.80 \mathrm{MHz}$ |

The FUJI spacecraft is being built in Japan under the control of JAMSAT, a group of Japanese Radio Amateurs.

ARSENE
The ARSENE spacecraft built by a group of French Radio Amateurs is supposed to be launched in the demonstration flight of the ARIANE 4 rocket in 1986. It will contain a Mode B transponder.

AMSAT -PHASE 3C
The AMSAT Phase 3C spacecraft is also scheduled for launch in mid 1986. It will contain a Mode B transponder as well as other transponders having either uplink or downlink capability on the higher frequency bands.

AMSAT has a policy of not obsoleting user equipment, so mode B will be around for a long time. As mode A is an excellent introductory mode, it can be expected on any further general purpose Phase 2 type spacecraft. The Russians also tend to favour hf so mode A and possibly mode K will also be around for a while.
fig. 5. Commonly used satellite communications bands.

Once you're hooked on receiving, the price of a transmitter usually becomes a justifiable expense. Although putting together a minimal receiving and transmitting station isn't difficult, steerable antennas for the 10-meter band are relatively large. Therefore relatively few Amateurs can steer their 10-meter antennas in both azimuth and elevation. Steerable antennas for 2 -meters and 70 cm are much smaller and as a result, more manageable.

Antennas in common use on the 10 -meter band include verticals and multielement beams optimized for working DX. As such, they have very good responses to signals arriving from low angles but are not at all suited for signals arriving at high angles. Vertical antennas respond to low-angle radiation from all directions, while beams respond to low-angle signals from the direction in

Step up

to the world's mostadvanced antenna system! WITH NOT A SINGLE WATT WASTED IN LOSSY TRAPS! (There aren't any!)

Hams in over 50 DXCC countries have done so already!

The DJ2UT-Multiband-Systems offer:

- Maximum gain plus F/B ratio with low VSWR across each band
- 2 kW CW output power
- 10/15/20/(30) 40-meter
bands with up to 7 band coverage incl. WARC bands with self-supporting "TWIN-BOOM" and boomlegths from 8 to 20 ft
- Air-core teflon dielectric coaxbalun and stainless-steel hardware at no extra cost
- traditional Blackforest craftsmanship

The DJ2UT-MULTIBANDERS
provide the superior full-size monoband-beam performance required during the present sunspot minimum.
For further information contact:

H.J. Theiler Corp.
P.O. Box 5369

Spartanburg, SC 29304
(803) 576-5566
or our distributor in Canada:
Dollard's Radio West
P.O. Box 58236

762 S.W. Marine Drive
Vancouver, B.C. V6P 6E3
Selected dealerships available.
See you in Dayton in April 1986

fig. 7. Typical VHF/UHF operator antenna characteristics. Hears well when satellite is high in sky. Talks well when satellite is low in sky.

fig. 8. Typical HF operator antenna characteristics. Hears well when satellite is low in sky. Talks well when it is high in sky.

which they happen to be pointed. Stations using these antennas have trouble hearing signals arriving from higher angles.

Conventional literature has touted the turnstile, or crossed dipole antenna, as the answer to the problems of satellite reception at 10 meters. It has circular polarization and a high-angle response pattern. It does very well when the satellite is located at elevations greater
than about 30 degrees as seen by the observer, but has a poor response to signals arriving at low angles (close to the horizon). Typical radiation patterns for these antennas are shown in fig. 6.

Most Amateurs who have problems working Mode A fall into one of two categories. The first category includes the VHF/UHF operator who decides that satellites offer both a technical challenge and increased opportunity for some exciting DX. This operator usually has excellent linear (horizontal or vertical) polarized antennas for the 2-meter uplink bands but has nothing for 10 meters. Reading that a turnstile can be a simple, effective device for reception, he builds one and finds that, sure enough, he can hear something. It may be weak, but, by golly, those signals are coming from outer space!

Step back for a minute and analyze this situation as sketched in fig. 7. The uplink antennas on 2 meters can put a powerful signal into the satellite when it's at low angles of elevation as seen by this operator. His downlink antenna, however, receives best when the satellite is at a high angle. In other words, when he can hear it, he can't access it . . . and when he can access it, he can't hear it - meaning, he cannot hear himself.

The second type of Amateur who decides to have a go at satellite operation is the HF operator, who usually has a good beam antenna for 10 meters. Reading that a turnstile antenna is a good choice for satetlite operation, he builds one and uses it. Now analyze this situation as sketched in fig. 8. The uplink antenna on 2 meters puts a weak signal into the satellite when it is at low angles of elevation as seen by this operator. His downlink antenna, however, receives best when the satellite is at low angles. In other words, when he can hear it, he cannot access it . . . and when he can access it, he cannot hear it - meaning that he cannot hear himself. Although this is the inverse situation to that of the VHF/UHF operator it has the same characteristics: both are "alligator operators" all mouth and no ears.

There is a third category: the apartment dweller who cannot put up HF antennas at all. This type of operator can usually install some kind of VHF/UHF array on a balcony and work Mode B quite well. But when he tries Mode A, he has problems because of the size of his 10 -meter receiving antenna.

It's no surprise, then, that the vast majority of Radio Amateurs who decide to become active in satellites have trouble working them at first.

matching uplink and downlink antennas

In order to get the most enjoyment out of satellite operation, it's necessary to match the uplink anddownlink antennas. Before doing this, however, it's
necessary to consider other aspects of the satellite communications path.

The Earth-Satellite-Earth ccommunications link is a line-of-sight path. Each ground station has a range circle for which a window allows communications into the satellite. In order to work any other station, the range circles of the two stations must overlap as shown in fig. 9. The duration of any contact is governed by the time that the spacecraft spends in that window. Thus, the higher the elevation of the satellite as seen by the ground station, the shorter its communications range along the surface of the Earth. The best DX contact between any two stations occurs when the sub-satellite point of the orbit of the spacecraft passes over the ground where their range circles just touch - that is, at a tangent to both range circles. They will, however, also have very little time to make that contact.

antenna characteristics

The usual three-element Quad or Yagi-type antenna puts out a good directional low-angle signal. The turnstile antenna puts out a good omnidirectional highangle signal. Vertical antennas put out good omnidirectinal low-angle signals. The $3 / 8$ and $5 / 8$ wave antennas used on 2-meters have good omnidirectional low-angle radiation characteristics. Somewhat directional high-angle radiation may be obtained from sloping dipoles attached between the top of a mast and the ground in the manner of guy wires (but don't ever use them as such), as shown in fig. 10. If you want to work the satellites successfully, you must match the characteristics of your uplink (transmitting) and downlink (receiving) antennas so that they have similiar radiation patterns.

receiving signals

The satellite downlink is usually marginal because the spacecraft is using low power and is far away. Every ESE (earth-satellite-earth) contact practically qualifies the spacecraft for yet another 1000-mile-perwatt award for ORP communications.

Most modern receivers (and others not so modern) suffer from a loss of sensitivity at the top end of the 10-meter band so that using a preamplifier to increase the strength of the received signals is a good idea. Most Amateurs feel that to communicate with DX stations they need the biggest antenna they can put up and the maximum power they can put out. But there's a fallacy at work in this kind of thinking; if the minimum amount of transmitted power to put an S-9 signal into a DX location is, for example, 100 watts, then for that transmitter to use 1000 watts would be a waste of power . . . or would it? For the moment, ignore the QRM factor in which the more power you use, the louder you are and the more likely you are to be heard

fig. 10. Sloping antennas for 10 meters. Optimally, put slopers on four sides of tower. These will work well for regular 10 meter contacts. Put dipole or beam on tower.
over the rest of the pack. If the signal is made weaker or attenuated by the ionosphere for one reason or another, what happens? In our example, we are receiving signals from a transmitter having the calculated 100 watts. If a fade equal to 5 S -units takes place, the received signal will drop down to $\mathrm{S}-4$. This isn't too serious; S-4 signals can be copied, but what happens if the station is using the QRP and was $\mathrm{S}-4$ to begin with? The same fade would take it down to S minus 1 or below the noise level, and no signals could be copied. The communications link should contain enough gain to minimize or avoid loss of reception due to extreme fading. In other words, some kind of margin should be built into the link.

the communications link

The communications link in a satellite contact can readily be split into two parts, the uplink and the downlink. Consider each of these in turn.

In the downlink, the transmitter output power is not under the control of the Radio Amateur, but is instead fixed by the satellite. The attenuation of the signals radiated by the satellite is a function of the distance between the spacecraft and the receiving station. The actual strength of the received signal at the ground station antenna will vary because of the attenuation due to fading and polarization changes in the ionosphere. Thus all the ground station operator can do is make sure that he has the best and most sensitive receiving capability that he can have. Ideally, the receiver should be such that the beacons on the downlink are receivable at good signal strength. In most
K.V.G. CRYSTAL PRODUCTS

9 MHz CRYSTAL FILTERS

MODELXF-9AXF-9BXF-9B-01XF-98-02XF-9B-10XF-9CXF-9DXF-9EXF-9MXF-9NBXF-9P

Appli- cation	Band- width	Poles
SSB	2.4 kHz	5
SSB	2.4 kHz	8
LSB	2.4 kHz	8
USB	2.4 kHz	8
SSB	2.4 kHz	10
AM	3.75 kHz	8
AM	5.0 kHz	8
FM	12.0 kHz	8
CW	500 Hz	8
CW	500 Hz	8
CW	250 Hz	8
IF noise	15 kHz	2

10.7 MHz CRYSTAL FILTERS

WRITE FOR FULL DETAILS OF CRYSTALS AND FILTERS
Export inquiries Invited.
Shipping $\$ 3.75$
MICROWAVE MODULES EQUIPMENTS
Use your existing HF or 2 M rig on other VHF or UHF bands.

RECEIVE CONVERTERS		$\begin{gathered} \text { LINEAR } \\ \text { TRANSVERTERS } \end{gathered}$	
MMk 1691-137	\$259.95	MMt 1296-144G	\$329.95
MMk 1296-144G	18995	MMx 1268-144	229.95
MMc 439.ATV	94.95	MMt 435-28(S)	309.95
MMc 432-28(5)	64.95	MMt 432-28(S)	28995
MMc 144-28(HP)	84.95	MMt 144-28(R)	339.95
MMc 144-28	59.95	MMI 144-28	189.95
LINEAR POWER AMPLIFIERS			
2M		70 cm	
MML 144-30-LS	109.95	MML 432-30-L	219.95
MML 144-50-S	110.95	MML 432.50	229.95
MML. 144-100-S	209.95	MML 432-100	379.95
MML 144-100-LS	189.95		
MML. 144-200-S	372.95		
ANTENNAS			
2 M			
10XY-2M	\$69.95	LOOP YAGIS	
70 cm :		1268-LY	\$49.95
70/MBM28	\$39.95	1296-LY	49.95
70/MBM48	64.95	1691-LY	59.95
70/MBM88	9495	order loop yagi con	or extra

Send 666 (3 stamps) for full details of all our VHF \& UHF equipments and KVG crystal products.
Shipping: FOB Concord. Mass

BASEBALL CAP

How about an attractive BASEBALL style cap that has name and call on it. It gives a jaunty air when worn at Hamfests and it is a great help for friends who have never met to spot names and calls for easy recognition. Great for birthdays, anniversaries, special days, whatever occasion. Hats come in the following colors
GOLD, BLUE, RED, KELLY GREEN
Please send call and name (maximum 6 letters per line)
UFBC-81

I.D. BADGES

No harn should be without an I.D. badge. It's just the thing for club meetings, conventions, and get-togethers, and you have a wide choice of colors. Have your name and call engraved in either standard or script type on one of these plastic laminated I.D. badges. Available in the following color combinations (badge/lettering): white/red, woodgrain/white, blue/white, white/black, yellow/ blue, red/white, green/white, metallic gold/black, metallic silver/black.
\square UID Engraved I.D. Badge
\$2.50
Ham Radio's Bookstore
Greenville, NH 03048
cases, this means that a receiving preamplifier should be used ahead of the receiver.

In the uplink, the receiving antenna and on-board receiver sensitivity are governed by the design of the satellite. The attenuation of the signals from the ground as received by the satellite is a function of the distance from the spacecraft to the transmitting station. The actual strength of the received signal from the ground station antenna will vary because of the attenuation due to fading and polarization changes in the ionosphere. The effects of the ionosphere on the uplink may differ from those on the downlink. In the past, AMSAT has performed the link calculations before the launch of the spacecraft and released a recommended value in radiated uplink power (EIRP) for Amateurs to use with the satellite. This number has usually been conservative, and most satellite users have no trouble working through the transponder with much less power. The common solution to this problem is to boost the transmitter power until a good return signal is heard. This is not the optimal solution, because stations that have problems hearing themselves will tend to use too much power, not because they can't get into the satellite, but because they cannot hear themselves getting into it. The ionosphere may also behave differently in different places at any time, so that although the sending station may be having trouble hearing his own downlink, other stations further away may be copying him with ease. There's no easy solution to this situation. The compromise is to attempt to make your own signal as received on the downlink equal in strength to that of the transponder beacon. This means that you adjust your transmitter power to keep your own signal as strong as the beacon on your receiver. You can do this either by reducing the transmitter power gain or by aiming the antenna away from the spacecraft.

Gain in the communications link can be obtained by using amplifiers or directional antennas. Directional antennas are at a disadvantage in that they must be moved to track the satellite during the pass, while omnidirectional ones do not. On the other hand, they're usually cheaper than amplifiers, particularly high power UHF transmitting types. Thus, to obtain a certain power output level on the uplink, the Amateur has the choice of a directional antenna and low power or an omnidirectional antenna and high power, or something in between. Similarly, on the downlink, if the directional antennas are used, a receiving preamplifier may not be an absolute necessity. In any event, for reasonable results, make sure that the characteristics of your uplink and downlink antennas are matched.

locating the satellite

The common adage, 'If you can't hear them, you
can't work them" must be modified for satellite users to read, "If you can't locate them, you won't hear them . . . and if you can't hear them, you can't work them."

In order to work satellites, an Amateur has to know not only when a satellite is in range, but also where to aim his antenna in order to put a signal into it. A number of different techniques have been developed over the past few years: graphical "circular slide rules" were first used very successfully for Phase 2 low-orbit satellites. As the personal computer found its way into ham stations, computer programs were developed to locate the satellites and the graphical plotters could be used to augment computer-generated data.

Fortunately, the first OSCAR satellites used by large numbers of Amateurs (AMSAT's OSCAR 6, 7, and 8 and the early RADIO spacecraft) were in circular orbits, which made locating them easy. All you had to do was pick a "reference orbit" as published in the Amateur Radio press and add the orbital increment to determine the position of the next equator crossing (start of the next orbit) and then add the period of the orbit to find the time of the following orbit.

When the first Phase 3 satellite (AMSAT's OSCAR 10) was put into service, it was placed into an elliptical orbit with a high apogee and a low perigee definitely a non-circular orbit. AMSAT's Tom Clark, W3IWI, an astronomer by profession, wrote a program that utilized Keplerian elements for keeping track of the position of any satellite in the Amateur Satellite Service. This and many other programs have been widely disseminated and there should be at least one member of each radio club who knows how to get hold of them. (AMSAT can supply copies of such software through its Software Exchange.) Locating the satellite, therefore, should not be a problem.

reference

1. Tom Clark, W3IWI, "Basic Orbits," Orbit, March/April, 1981

ham radio

NEW BOOKS

RADIO DATA REFERENCE BOOK

 5th Editionby G. R. Jesop, G6JP and R. S. Hewes, G3TDR A brand new edition of the reference "bible" for all Amateurs and electronic enthusiasts. Perfect compliment to ARRL HANDBOOK. Covers units and symboils, basic calculations. resonant circuits and filters, circuit design, antennas and transmission lines, radio and TV services, geographical and meteorological data, materials and engineering data and mathematical data 1985 fth edition 244 pages
ISS-RDR
Hardbound $\$ 14.95$

1986 WORLD RADIO TV HANDBOOK

40th Edition

Often referred to as the SWL's bible, this 40th anniversary edition is sure to be a best seller. Its loaded with all the latest call signs, schedules, frequentcies, and other important information for TV and radio broadcasters around the world. Covers LF. MF and SW broadcasting services as well as TV sta tons around the world. Also includes equipment reviews and other special features. It you haven't seen a copy before, you don't know what you're missing! 1986 40th edition.
GL-WRTV86
Softbound $\$ 19.95$
Please enclose $\$ 3.50$ shipping and handling

Greenville, NH 03048

MODEL PK

SPECIAL PACKAGE DEAL!!!
Amateurs Only
includes PK1 installed in
cabinet w/ cable set \& pwt. supply
\$169.95

PK1. FCC CERTIFIED - wired and tested in cabinet $\$ 149.95$
PK1S . Subassembly board - wired and tested
$\$ 109.95$
PKDOC - Documentation only - Refundable on first PK1 purchase
\$ 9.95
Please specify Call Sign, SSID Number, and Node Number when ordering Contact GL B for additional info and available options.

We offer a complete line of transmitters and receivers strips, preselector preamps, CWID'ers \& synthesizers for amateur \& commercial use.

Request our FREE catalog. MC \& Visa welcome.
~ 111

CLBELECTRONICS,INC.
 151 Commerce Pkwy, Buffalo, NY 14224 716-675-6740 9 to 4

CRESCENT RADIO ELECTRONICS 2500L,
A Broadband, "No-tune" HF Power Amplifier, Soon to become available* to the Amateur Radio Service

Featuring,

- Broadband ()output Networks
(No servos or sensing circuits)
- Continuous Duty 1500 W ats Output
- Commercial Service Power Supply
- Rugged 8877 Industrial Power Triode
- Full-cabinet Cooling By stem
- Standard Amateur Band Coverage

Please I init
BOOTH 111 at DAYTON HAMVENTION Dayton, Ohio - April 25, 26, 27

Your Hosts

RON SCALISE WA5ZFP

Crescent Radio Electronics, Inc.
Research, Development, Manufacturer
129 Somerset - LaPlace. Ia. 70068
(504) 736-0022
*FCC type approval, patent, pending.
112

the packet radio lternative.

The MSO complete packet radio system an alternative dedicated packet radio computer system with communications software, (Copylink) and a TÅPR TNC-2 clone. Use your SANYO computer and software for an unattended RBBS, or use any of the thousands of public domain software programs available to the CP/M user. The system also comes with the complete micropro software package for word processing. (Wordstar) Spreadsheets (Calcstar) and a database, (Infostar) for your QSO's log, contest club member list or any other record keeping needs!! Also included is a spelling checker, (Spellstar), mailing label maker, (Mailmerge) and basic computer programming language. At Micro Supply Organization we offer the lowest prices on Sanyo computers and software. With prices like these you can afford the convenience of owning and operating more than one computer. We also offer the User SupportHotline for questions concerning your computer or about software availability. Whether you need one or a dozen computers, Micro Supply Organization is the place to get them!

USER SUPPORT HOT LINE

805/393-2247

All systems carry full 90 day warranty

CASH PRICE ONLY
Check in advance. Add 3% for VISAIMC Shupping
\& handling charges will be added to each order
For our catalog with complete details and prices, send $\$ 1.00$ to:
Micro Supply Organization, Inc. VISA
4909 Stockdale Hwy $\# 180$ 4909 Stockdale Hwy "180
Bakersfield CA 93309
Bakerstietd. CA 93309
MON. - FRI. 7am - 5 pm PST•SAT. 9 am - 5 pm PST

Get more for your money!

寝SANYO MBC 1160

Including this FREE software:

- Communication Program
- Wordstar - Spellstar
- Mailmerge - Calcstar
- Infostar - BASIC

8-Bit Integrated
Computer with 640KB Formatted Mini Floppy Disk Capacity

- Z-80A CPU with no-wait mode and large 64 KB RAM $/ 4 \mathrm{~KB}$ ROM memory capacity for fast execution
- CP/M operating system with editor. assembler and all standard utilities.
- No-glare amber monitor display screen for easy viewing
- 80 -character $\times 25$-line display 256 characters in 8×12-dot matrix cells
- Two internal double-sided, doubledensity, double-track $51 / 4^{\prime \prime}$ slim. type mini floppy disk drives with 640 KB formatted capacity
- Interfaces for one Centronics printer and one RS-232C port.
- Optional interface for hard disk drive and for external $8^{\prime \prime}$ floppy disk drive

The Packet Radio Controller

An identical TAPR TNC-2 clone with identical software and hardware. Features the latest AX. 25 version 2.0 software, hardware HDLC for full duplex, true Data Carrier Detect for HF, 16K RAM simple operation plus more.

* Special Printer Pricing when purchased with above system.

Complete package only

advanced technology.

Complete MS-DOS/CPM Super Turbo

In keeping with industry trends MSO is bringing our customers high performance P.C. compatibles and accessories. MSO takes the P.C. compatible to maximum performance with its SUPER TURBO. The SUPER TURBO features the V20-8 chip which runs at three times the speed of the IBM-PC XT* and also runs CPM 8080 software.
The SUPER TURBO comes complete with the MS-DOS operating system, Read and Run CPM, full Instructional Documentation, Utility software, plus
for our first 100 customers MSO is offering the Micropro Wordstar Professional Software package. This package includes: Wordstar, Mailmerge, Correctstar, Starindex, Datastar and a G.L. Accounting System. The SUPER TURBO is a complete turnkey system with everything necessary to plug in and operate.

USER SUPPORT

HOTLINE

805/393-2247

All systems carry full 90 day warranty
CASH PRICE ONLY
Check in advance. Add 3% tor VISA/MC. Shipping
\& handling charges will be added to each order
For our catalog with complete details and prices, send $\$ 1.00$ to:
Micro Supply Organization, Inc.
4909 Stockdale Hwy \#180
Bakerstield, CA 93309
MON - FRI 7am - 5pm PST * SAT 9am - 5pm PST
-IBM is a registered trademark of the IBM Corporation.

The Super Turbo P.C. runs IBM software and CPM 8080 programs

- CPU - V20-8 8 mHz Super Chip runs ${ }^{*}$ IBM compatible software at 3 times the speed of the IBM-XT and CP/M 8080 software.
- 8087 Math Processor optional
- 256 K RAM on mother board expandable to 640K
- ROM 8 K Bios
- 6 empty slots for expansion
- 2 serial port one optional with expansion kit
- 1 parallel port
- 1 game port
- Clock calendar with software
- Hi-Res monographics video board
- Floppy controller
- Dual Floppy Drives 360 K ea.
- 135 watt XT Power Supply
- 5150 style compatible keyboard
- Hi-Res TTL Green or Amber $12^{\prime \prime}$ monitor
- MS-DOS operating system and manual.
- Instructional Documentation and Utility Software
- Assembled and tested in U.S.A.
- Optional internal 20 meg sub system for Super Turbo add \$549

> Special printer pricing with purchase of above computer.

wide-range RF power meter

Some time ago I decided to build a small antenna range. One of the key items I knew I'd need was an RF power meter with good stability and wide range. Most commercial units I found were beyond repair or the limits of my budget, and the homebrewed units were either limited in range or used modulation to avoid a drift problem.
I had used an LM11 operational amplifier in designing an earlier project and a friend later introduced me to an even better one. Some of the new chips coming on the market offer unbelievable performance and are slowly making system designers out of us circuit designers. A chip here, a chip there, follow the spec sheet as to optimum feeding - and we have a piece of test equipment that rivals commercial units.
I combined some of these into an RF power meter that features a 30 dB (useful to 35 dB) range from - 15 dBm to -45 dBm , remote control, and good temperature stability. Although the antenna range is still in the future, the power meter has been used on the bench for evaluating hybrid couplers, helical filters, cavity filters, IF amplifiers, and such. I plan to use the power meter on the 70 cm band. But it can also be used from the HF band up into the GHz range.

theory of operation

The heart of the unit is the Hewlett-Packard HSCH-3486 zero-bias Schottky diode used as the detector. This device offers high voltage sensitivity and doesn't need the biasing featured in other detection schemes. The response curve is logarithmic from - 50 dBm to -20 dBm ; above -20 dBm the diode becomes increasingly nonlinear in detection response. The lower end is limited by the amplifier used.
To avoid using a modulation method of detection, a chopper stabilized operational amplifier was used. (The schematic is shown in fig. 1). The Intersil ICL7650 features an extremely low input offset voltage of 1 μ volt over a wide temperature range. The chopper opamp basically converts the input $D C$ voltage to $A C$,
amplifies it, and converts it back to DC. Amplifying the DC output from the detector 150 times with a chopper op-amp puts the signal at a level that simpler op-amps such as the LM11 can handle. The National Semiconductor LM11 is a precision DC amplifier that combines the best features of existing bipolar and FET op-amps. Offset voltage is 100μ volts and drift is 1 $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$. Six ranges in 5 dB steps are accomplished by this circuit by changing the gain of the amplifier. Each range is controlled remotely by reed relays. Offset voltages in the amplifier are nulled with two pots, one for the high range and one for the lower three ranges. These three devices - a diode which converts RF power into a logarithmic output equal to a dB scale and a pair of operational amplifiers - amplify AC microvolt level signals to volt levels, while introducing little drift.

construction

Originally the unit was to be mounted directly at the antenna and was therefore constructed in a diecast box for good shielding. Power is supplied remotely from a separate box, which also contains the meter and scale change (fig. 2). A schematic of the power supply is included in (fig. 3). When purchasing a dB scale meter make sure that the -3 dB point falls exactly at half scale. Some meters have been "fudged" to accomodate circuit nonlinearities.

The inside of the box is shown in fig. 4. Its detection circuitry, visible on the left side, is shown in an enlarged view in fig. 5. The parts are mounted on a small piece of 0.015 inch brass shim stock and held in place by the TNC connector. Note the chip capacitor on the left, supporting the 50 -ohm resistor. A value of 100 pF is adequate down to 10 MHz ; below 10 MHz this value should be increased. For work above 70 cm up to 4.2 GHz , a coaxial-mounted detector is recom-

By Rudolf E. Six, KA8OBL, 30725 Tennessee, Roseville, Michigan 48066

fig. 2. RF detector and amplifier mounted in a shielded enclosure. Range selection, meter and power supply are in a separate unit.
mended. A suitable unit, Model CD-51, is available from Elcom Systems Inc., 4032 Clint Moore Road, Boca Raton, Florida 33431-2895. The printed circuit board is suspended in the box (fig. 6). Two hangers made from 0.015 -inch (0.038 cm) brass shim stock are soldered to the ground foil of the printed circuit board and are held by the feedthrough capacitors. Metal and

TELEWAVE'S "PROBLEM SOLVERS"

Transmitter Combiners • Receiver Multicouplers

 - Monitor Equipment - Test Equipment • Ferrite Isolators and Terminations • High Q Cavities and Filters • Duplexers • Systems Engineering

Transmitter Combining

Receiver Multicoupling

IM Suppression Panels

Duplexers \& Preselectors

GSA Number 00K86AGS0646

(415) 968-4400

1155 Terra Bella Ave., Mountain View, CA 94043
in Canada - contact Telewave Ltd., 11151 Horseshoe Way +4
Richmond, B.C. Canada V7A4S5 (604) 274-8300

fig. 3. RF power meter power supply schematic.
carbon film resistors are used for accuracy and low noise. The PC board artwork and components layout are shown in figs. 7 and 8, respectively.

calibration

Calibration depends on the accuracy of the standard used. If you have no fixed attenuator, purchase the Model AT-51 5 dB TNC from Elcom (\$14). Set the meter to the -15 dB range, check and adjust for zero with no signal applied. The meter zero pot has little control on this scale and if the meter doesn't read zero, there's something wrong with the circuit. Adjust a signal generator for $\mathrm{a}+30 \mathrm{dBm}$ output level and turn R16 for full scale or 0 dB on the meter. The frequency of the generator is not important - in this case, 150 MHz was simply convenient. If the signal generator has no dBm scale, turn R16 to midpoint and adjust the signal generator for 0 dB . Insert a 5 dB attenuator. The meter should read -5 dB . Turn to the -20 dB scale while momentarily disconnecting the signal generator, then check and adjust for zero. The meter zero pot should show more control. Reconnect the signal generator and adjust for 0 dB with R17. Insert 5 dB of attenuation and the meter should again read -5 dB . Turn to the -25 dB scale and repeat the above procedure. The meter zero pot will have quite a lot of control. Note that on the -25 dB scale the needle

fig. 4. Parts layout in the detector-amplifier. R21, 22, and 6 are soldered between the box and the pc board. C13 is soldered on the back of the pc board under U2.

fig. 5. Close-up of the detector circuitry.

fig. 6. Printed circuit board is supported by brass shim stock.
shows some jitter or drift. This is circuit noise. This drift should be less than $\pm 1 / 10 \mathrm{~dB}$ at full scale. Return to the -15 dB scale, insert 5 dB of attenuation and increase output for a 0 dB reading. Turn to the -10 dB scale, remove the signal generator and adjust for zero with the right side meter zero pot. Remove the attenuator and reconnect the signal generator. Adjust R9 for 0dB. Insert attenuator; adjust signal generator

fig. 7. RF power meter artwork.

fig. 8. Component layout.

fig. 9. RF power meter is used, in a typical application, to determine hybrid coupler isolation value.
for 0dB. Turn to the -5 dB scale and remove the attenuator. The meter should read 0 dB . Insert the attenuator again and adjust the signal generator for 0 dB . Turn to the 0 dB scale and remove the attenuator. Note that the meter doesn't read 0 dB , but it should be within $1 / 4 \mathrm{~dB}$ of full scale. We are now start-
table 2. Parts suppliers.
C1 thru C8, C30, R1, 2, TNC connectors
Microwave Components
11216 Cape Cod
Taylor, Michigan 48180
U1, CR1
Hamilton-Avnet
Local outlets in most states. Distributor will ship COD to individuals. Cost of part approximately $\$ 25$.
$U 2$
Jameco Electronics
1355 Shoreway Road
Belmont, California 94002
K1 and Bud chassis and box
Newark Electronics
Distributors in most states.
All other parts
Digi-Key
701 Brooks Avenue, South
Thief River, Minnesota 56701
Printed circuit is available from author for \$11.00. Please add $\$ 1$ for shipping.
ing to run into the nonlinear portion of the detector diode.

using the power meter

Figure 9 shows a typical set-up in which the power meter is used. A 70 cm hybrid coupler is checked for isolation between port 1 and port 2. The ICOM-471A provides the signal with its output reduced by a $10 \mathrm{~dB}-10$ watt attenuator to less than 1 watt. Further attenuation is introduced by a step attenuator.
ham radio
P.C. ELECTRONICS 2522 S. PAXSON LN. ARCADIA CA 91006 (818) 447-4565 TOM W6ORG MARYANNWB6YSS

Compuserve 72405,1207

ELECTRONICS

SEE US AT DAYTON BOOTH 359

AMATEUR TELEVISION

INTRODUCING OUR NEW SMALL ALL IN ONE BOX TC70-1 ATV TRANCEIVER AT A SUPER LOW \$299 DELIVERED PRICE.

TC70-1 FEATURES:

- 10 pin VHS color camera and RCA jack video inputs.
- Crystal locked 4.5 mHz sound subcarrier.
- PTL (Push To Look) T/R switching.
- Dual gate GaAsfet tuneable downconverter.
- Two frequency 1 watt pep xmtr. $1 \times$ xal incl.
- Xmit video monitor outputs to camera and jack.
- Small $7 \times 7 \times 2.5^{\prime \prime}$ for portable, mobile, or base.
- Draws only 500 ma (exc, camera) at 13.8 vdc.

Just plug in your camera, VCR, or computer composite video and audio, 70 cm antenna, 12 to 14 vdc , and you are ready to transmit live action color or black and white pictures. Sensitive downconverter tunes the whole $420-450 \mathrm{mHz}$ band down to channel 3 on your TV set to receive. Both video carrier and sound subcarrier are crystal controlled. Specify $439.25,434.0$, or 426.25 mHz . Extra crystal $\$ 15$.

WHAT ELSE DOES IT TAKE TO GET ON ATV?

Any tech class or higher amateur can get on ATV. If you already have a source of video and a TV, it costs about the same as getting on 2 meters.

DX with TC70-1s and KLM 440-27 antennas line of sight and snow free is about 15 miles, 7 miles with the $440-6$ for portable use such as parades, races, search and rescue, etc. You can add one of the two ATV engineered linear amps listed below for greater DX.

AT 70 cm , antenna height and gain is all important. Foliage can absorb much of the power. Also low loss tight braided coax such as the Saxton 8285 must be used.

The TC70-1 has full bandwidth for color, sound, and computer graphics. You can now show the shack, computer programs, home video tapes and movies, repeat SSTV or even space shuttle video if you have a TVRO.

20 WATT SPECIAL \$399

SAVE $\$ 9$ on the TC70-1 \& ELH 730G when purchased together

ACCESSORIES:
 ATV, SSB, FM. 9 amps.

KLM 440-27 14.5 dbd antenna KLM 440-6 8 dbd antenna
$\$ 89$ \$38

Alinco ELH-730G 20 watt amp ATV. SSB, FM. 4.5 amps .

ARE YOU LOOKING FOR AN IBM COMPATIBLE COMPUTER? do you know what compatible will meet your needs NOW AND \mathbb{N} The futurep are you confused?
the first thing to clear up is the question of what COMPATIBUITY REALLY IS. YOU PROBABLY THINK THAT ALL compatibles are the same. well let me tell you that THEY ARE NOT. SOME OF OUR COMPETITORS HAVE THER OWN DEFNNTION OF COMPATIBLITY. SOME MACHNES ARE hardware compatible and some are software compatible. very few are both, our unit was DESIIGNED TO MEET IEM SPECIFICATIONS SUCH AS BOBB CPU 135W POWER SUPPLY, 8 EXPANSION SLOTS, 256K RAM, OPTIONAL 8087 CO-PROCESSOR 10 OR 20 MEGABYTE HARD DRIVE ENHANCED VIDEO FOR HIGH RESOLUTION GRAPHICS. gTOP \mathbb{N} FOR A FREE TEST DRIVE AND BRING ANY SOFTWARE OR HARDWARE YOU MAY HAVE TO TEST OUR SYSTEM.

FEATURES

PROCESSORS	INTEL BOBB IG BIT 4.77MHZ PROCESSOR OPTIONAL 8087 MATH CO-PROCESSOR
MEMORY	256K EXPANDABLE T0 640K
DISK STORAGE	MAXIMUM 4 360k FLOPPY DRIVES
DIIPPLAY	640×200 BLACK \& WHTE GRAPHICS 320×200 COLOR GRAPICS
KEYBOARD	IBM STYLE 108 KEYS LED INDICATORS
OPERATING SYS	IBM PC-DOS CP/M-B6 VENX MS-DOS COMPAQUE-DOS COLUMBIA-DOS ETC.
SOFTWARE	RUNS FLIGHT SIMULATOR DBASE III FRAMEWORK SYMPHONY LOTUS I23 IBM DIAGNOSTICS GW BASIC WORDSTAR

OPTIONAL IO OR 20 MEGABYTE HARD DRIVE

[^1]

AVAILABLE AT:
AZOTIC INDUSTRIES 2026 W BELMONT CHICAGO ILL 60618 312-975-1288

grounded-grid amplifier parasitics

Simple cure extends amplifier life

For several years, my kit-built amplifier with a pair of $3-500 \mathrm{Zs}$ had been spitting at me because of arcing at the plate tuning capacitor. I figured that either my line voltage was too high or that some flying insect was getting into the amplifier tuning capacitor and causing the arcing. This went on until the plate parasitic suppressor on the inboard tube started to smoke. (This would have been a clue for anybody who was paying attention . . . but I wasn't). I replaced the plate parasitic-suppressor and got an instant replay: I smelled burning resistor again. I didn't know what to do next, so 1 just lived with the stink of burning phenolic for a while. I operated the amplifier for some time, but the spitting continued. Something was wrong, but I was running out of ideas.

Nothing changed until I tried a new set of tubes and the amplifier made a noise like a shot from a 22 rifle. I pulled the plug and removed the case to inspect for damage. The problem wasn't hard to find; the grid-to-ground choke on the inboard tube had exploded its wire. One of the 200 pF capacitors from grid to ground had also exploded.

probable cause

I asked around and it seemed that other hams had experienced the same problem. The consensus was that the tube had shorted from grid to filament, causing the choke and capacitor to explode. This was confirmed by the fact that many others with this problem had found the tube to be shorted from grid to filament during the investigation following the big bang. This seemed unlikely to me because you can place a short from grid to filament on a zero-bias triode without any-
thing cataclysmic happening. Naturally you can't drive the cathode because the cathode is grounded, but there wouldn't be any fireworks. The answer had to be some condition that would create a grid voltage of over 2000 volts (it would take that much to destroy the 200 pF mica capacitor from the grid to ground) and more than 3 amperes of grid current which would be necesary to explode the choke wire. It had to be caused by parasitic oscillation. Light loading causes high grid current and no loading causes potentially destructive grid current and voltage. A high impedance path by the plate tank inductor would account for the "light loading" condition to VHF energy.

casualty list

Parasitic oscillation can destroy the following amplifier parts: tubes, due to grid to cathode shorts; grid current meters and shunts; zener bias diodes in the cathode circuit; contacts on the plate circuit bandswitch - usually on the 160 or 80 meter plate tuning capacitor padder contact; small chokes and capacitors in the grid to ground circuit; and, almost unbelieveably, filament transformers, because of voltage breakdown. This voltage surge is the result of the positive high voltage temporarily going to near ground potential when the tube arcs internally as the grid wires explode. With the positive high voltage at ground potential, the negative lead rises to the supply voltage, which is usually around -3000 volts in a typical amplifier. This dumps the stored energy of the HV filter capacitor into the only current path from negative HV to ground: the grid current meter and shunt resistor, which explode. This leaves an open circuit, and the negative HV arrives at the zener bias diode and the center tap of the filament transformer. Filament transformers are not usually designed to withstand high voltages, and the insulation may break down. This creates a current path inside the transformer, and

By Richard Measures, AG6K, 6455 LaCumbre Road, Somis, California 93066

fig. 1. Grid and cathode modifications reduce tendency to oscillate at VHF.
the transformer will slowly melt unless the fuse opens. I personally know of two, a commerical pair of 3-500Z amplifiers that suffered from all of the above difficulties after the big bang.

a previous solution

Long before the $3-500 Z$ was invented, the Collins Radio Company ran into a similar problem during the design of their 811A amplifier, the 30L-1. In order to prevent the amplifier from "taking off," a degenerative parallel R-C circuit was connected from each tube's grid-to-ground. The resistor destroyed the Q of the grid-to-ground resonant circuit. At some VHF frequency the grid structure inductance and plate to cathode capacitance resonated. This looks like a very high impedance, causing positive feedback at or near the frequency. This unavoidable situation will always develop at some frequency in any gounded-grid amplifier. But one would hope there will not be a resonant circuit in the plate compartment or in the input circuitry or associated wiring that would allow the oscillation to take place.

The Collins solution used a resistor that lowered the Q and small series capacitor that cancelled some of the built-in inductance in the grid structure, the tube base, and the socket, thereby increasing the grid resonant frequency above the natural resonant frequency of the grid if it had been directly grounded with a short copper strap. Other amplifier manufacturers copied the capacitor- to-ground trick, but they didn't understand that the capacitor was part of a tuned circuit. Instead,
they thought it was some sort of bypass. With the belief that "bigger is better," especially when you're bypasssing, they used more than the 200 pF that Collins had wisely chosen. My troublesome amplifier used 600 pF total, with 200 pF from each of the three grid pins to ground. (See fig. 1 for a typical circuit). I copied the Collins grid suppressor circuit. The amplifier did not oscillate. These results were published in a ham radio "ham note" in October, 1982.

does it work with other amplifiers?

Since that time l've learned more about the subject: whether or not an amplifier can oscillate depends on the gain of the particular tubes you have in your amplifier. New tubes may have more gain than old tubes. So the parasitic cure I used successfully in my amplifier did not always work in someone else's amplifier. After some trial and error, I found that using three separate paralleled R-C suppressors, one from each grid pin to ground, worked better in more cases than the simple circuit I described in my original article. The best values seemed to be about 50 to 70 pF for the capacitors and from 75 to 100 ohms for the resistors. This circuit worked in over 90 percent of the amplifiers.

At this point I didn't know what to do about the few remaining amplifiers that still had a tendency to take off. Fortunately, the metal-film, non-inductive resistors most people were using for the grid-to-ground resistors were acting like fast-acting fuses in the grid current path, so that no one lost any tubes. The last piece of the puzzle was furnished by a ham in Samoa who had read the original aritcle. He owned a conduction-cooled amplifier (SB-230) that used an expensive high- μ triode. He experienced a meltdown with the typical fireworks assoicated with a parasitic oscillation. The tube was ruined and the 1000 pF grid-to-ground bypass capacitor was shorted. He had installed new parts, but was worried it would happen again, since the amplifier was still spitting occasionally. I could see from the schematic that the Collins grid parasitic suppressor circuit was not going to be a possibility since there was no way to remove the existing grid bypass circuit. Any parasitic suppression would have to be done elsewhere. With a triode, this wouldn't leave you with many choices. The cathode seemed like a good bet, since EIMAC says that it takes only 27 watts to drive an 8873 to full output, so we could afford to make the tube harder to drive. This might also keep the tube from flat-topping when driven with the average 100 -watt radio. A non-inductive resistor in the cathode would cause degeneration or negative feedback. This trick is often used in the emitters of bipolar transistors to prevent regeneration or instability. The trade-off is that the device is going to be slightly harder to drive. Only the drive requirement, not the power output, will be affected. I looked at the

EIMAC data sheet and noticed that the peak cathode current for an 8873 was about 1.8 amperes. Some quick calculations indicated that 11 ohms might be a good place to start. The power rating for the resistor is not easy to figure since the waveform is neither DC nor a simple sine-wave, but instead a pulse with a sinewave shape and a duration of about 200 degrees. The peak power is $1.8 \times 1.8 \times 11=35.64$ watts. The average power will be less than this for teletype operation and much less than that for SSB voice service because of the low duty-cycle.

As a simple rule, divide the peak power by 2 for teletype duty and by 3 or 4 for SSB. Dividing by 2 is recommended for the speech processor fans who like their audio to sound like creatures in a grade-B science fiction movie. Another consideration in selecting the wattage value is the fact that the average 2 -watt metalfilm resistor will dissipate 4 watts for at least 60 seconds with no ill effects.

Unfortunately, 2 watts is the largest size metal-film or metal-oxide-film resistor commonly available. More dissipation can be achieved by paralleling as many 2 watt units as needed. The 11 -ohm resistor was installed at the socket of the 8873, in series from the cathode lead(s) to the wire that delivered the input RF drive. During peak drive conditions, 19.8 volts of RF negative feedback will be developed ($1.8 \mathrm{amps} \times 11$ ohms). 100 volts of peak RF output was available to drive the cathode. Losing 20 volts still left more than enough drive to give full ouput. The circuit worked. The man in Samoa was happy. No more unwelcome surprises when using the amplifier!

The same fix was tried on the 3-500Z amplifiers that had proved so difficult to tame. The same resistor bank can be used with an 8877 - in the cathode lead, of course. The cathode resistor stopped the tendency of these unruly amplifiers to oscillate. In amplifiers with a pair of $3-500 \mathrm{Zs}$ the peak cathode current is close to 3 amperes. This means that you can get more negative feedback voltage with fewer ohms in the cathode circuit. It was found that approximately 3 ohms of resistance would do the job. Three 10 -ohm, 2 -watt metal-film resistors in parallel with some space between them will work fine. These resistors were installed between the RF drive coupling capacitor usually a $0.01 \mu \mathrm{~F} 1000$ volt unit - and the place on the filament lead (cathode in a 3-500Z) where the coupling capacitor was originally soldered.

When 3.33 ohms are inserted into the cathode lead, the driving impedance of the cathode will be increased. This will affect the input SWR of the amplifier. This effect is greater on the higher frequency bands because the input capacity of the tubes becomes a large part of the output capacity of the tuned Pi network, and this capacity is connected through a 3.33 -ohm resistor. If you don't want to adjust the
tuned inputs for the 21 and 28 MHz bands, you can use a plate parasitic suppressor, made from a $47-0 \mathrm{hm}$, 2-watt resistor and four turns of Number 16 wire wound on the resistor, in place of the RF negative feedback resistor. The parasitic suppressor will not improve the linearity of the amplifier, like the RF negative feedback resistor, but it will reduce the VHF gain of the circuit and improve stability.

The 4-1000A is a stable, grounded-grid amplifier tube with plate voltages up to about 3500 volts. Above 4000 volts, the gain of the tube increases, and parasitic oscillation is possible. The quality of the amplifier tube and the frequencies of the VHF resonances are determining factors in sustaining a parasitic oscillation. A 4-1000A amplifier that proved to be unstable above 4000 plate volts was stabalized in a manner similar to the method used on the stubborn 3-500Z amplifiers. The copper, grid-grounding straps were removed. Each of the three grid pins was connected to ground through a 75 -ohm resistor in parallel with a 56 pF capacitor. The screen and control grid pins were left connected to the copper plate that was previously used to bond the grids pins together. A 3.33 -ohm, 6 -watt resistor made from three 10 -ohm, 2-watt, metal film resistors in parallel, was connected in series with the $0.01 \mu \mathrm{~F}$ capacitor that couples the drive from the tuned input circuit to the cathode (filament). After modification, the amplifier showed no sign of instability with a plate voltage in excess of 9000 volts. At this plate voltage the amplifier exhibited 15.5 dB gain. This was done to test the stability of the amplifier. Everyday use at this plate voltage is probably not going to result in normal tube life. Plate voltages this high can also produce soft X-rays, which may cause injury to the operator as well.

grid-driven amplifiers

Another use for RF negative-feedback cathode resistors is in grid-driven amplifiers, so often plagued with high-intermodulation-distortion products, or splatter. For example, a friend who owned an NCL-2000 was concerned about the interference he was causing. The root of the problem was with the 8122 tubes themselves, since the best you can expect is about -30 dB of distortion products. This is roughly 10 times worse than what you can expect from the $3-500 Z$. The 4CX250 series tubes have approximately the same distortion specs as the 8122. To make matters even worse, the NCL-2000 design allowed grid current to flow freely during modulation. This causes the tube's plate current curve to take a nasty jag at low values of plate voltage. My friend was able to make the amplifier acceptably clean by installing three 2-watt, 51 -ohm, metal-oxide-film resistors per tube, with one resistor in series with each of the three cathode connections per socket. He also changed the tap
on the 50 -ohm grid-swamping resistor to avoid driving the control grid into conduction. This depends on how much driver power you have. The result was appreciated by all concerned.

There are other external-anode triodes besides the 8873,8874 , and 8875 s that are capable of taking off at VHF or even UHF frequencies. I have recently talked to two people who experienced instability problems with the 8877. For some reason, the problem seems to occur only when these tubes are used in HF amplifier circuits. Perhaps this is because of the extra leadlengths required in a HF amplifier design and by the fact that these tubes have excellent gain up into the UHF region. One of the 8877 amplifiers was a DTR-2000. The owner had discovered one of these no-longer-made amplifiers in an unopened box in a dealer's warehouse. He bought it for not much more than the price of a new tube. He was delighted with his "find" until the "big bang" occurred during his first day's use.

With a $3-500 Z$ parasitic, the grid may weld to the cathode. I've occasionally seen grid wires blown loose and rattling around inside the bottom of the glass envelope. Such a tube may continue to work. The 8877 in the DTR-2000 also had a wire from the grid blown loose, but from only one end. The free end of the wire had-shorted to the plate of the tube.

Another problem with the DTR-2000 is that 5.9 volts is applied to the filament, which, according to EIMAC, should never have more than 5.25 volts. This situation will appreciably shorten the life of the 8877's oxide-coated cathode. Some owners have corrected the problem by installing a $0.1 \mathrm{ohm}, 10$ watt resistor in series with the filament.

The important thing to keep in mind is that the average amplifier tube, with average gain at VHF, probably will not oscillate in a typical HF amplifier design. The problem shows up when you happen to get a unusually good tube - with lots of VHF amplifying ability - in a HF amplifier circuit.

the why of it

If you wanted to build an oscillator, you would need at least one tuned cirucit, an amplifier, and a feedback path. If you had two tuned circuits, one for the input and one for the output, your chances of building a successful oscillator would be even better. Keeping these facts in mind, I started sniffing around the input and output circuitry of my amplifier with a dip-meter. The bandswitch was set to 40 meters - the same band in which the big bang was heard. The drive coupling capacitor at the cathode of the $3-500 \mathrm{Zs}$, which connects to a short length of 50 -ohm coax, showed a good dip at 110 MHz . The lead from the plate of the tubes to the plate tuning capacitor showed a good dip at 105 MHz despite the presence of the parasitic sup-
pressor. The plate circuit dip could be moved to 110 MHz by slightly adjusting the plate tuning capacitor. The grid showed a dip near 90 MHz . We have two tuned circuits. We have a feedback path through the "grounded" grid. The 3-500Zs are rated at 110 MHz . It should be capable of sustaining oscillation. It does.

These resonances are nobody's fault. They are caused by the laws of physics and they cannot be eliminated by any practical amplifier design. The way to control the problem is to use non-inductive resistors in the input and output circuits to destroy the Q of the VHF resonances. Most people are accustomed to using a resistor in the plate lead to control parasitics, but the idea of using such a device in the cathode lead is sadly missing in most HF amplifier designs. This is sad because the cathode lead is an ideal place to accomplish the job, since a resistance in the cathode lead will cause desireable negative feedback which the plate circuit cannot do. If I had to pick just one place to put a parasitic suppressor, the cathode would be a good choice.
If you're thinking that your amplifier is immune to the problem, uou may be right - for the particular set of tubes that are in service The next time you're doing your annual spring cleaning inside the amplifier, check the plate lead for resonances with a dip-meter; you're going to get a nasty surprise. The drive coupling capacitor will also show a resonance whose frequency is mainly dependent on the length of coax that connects to the input bandswitch. The schematic does not show any VHF tuned circuits, but they're always there. Remember this when you plug in that hot new set of tubes. Two-watt resistors are cheaper than new tubes.

If you own an amplifier that sometimes snaps or spits, this isn't something to ignore unless you enjoy fixing broken linear amplifiers. The amplifier is trying to tell you something - if you're paying attention, you can save yourself some expensive grief.

neutralizing grounded-grid amplifiers

Why can't a grounded-grid amplifier be neutralized, like a Class AB, grid-driven amplifier? In EIMAC's book Care and Feeding of Power Grid Tubes, it's stated that grounded-grid amplifiers don't normally need to be neutralized. This is not a very comforting statement, considering that there appears to be no way to neutralize a single-ended, grounded-grid amplifier, even if you want to. Gonset tried to neutralize a four-tube 811A amplifier with notoriously poor results. If you own one of these, the Collins circuit will cure the problem.
references

[^2]ham radio

Greenville, NH 03048-9988

universal oscillator circuit

Test crystals over a 200:1 frequency range

For more years than I care to remember, I've been collecting crystal oscillator circuits with the hope that one day l'd stumble across the ultimate oscillator circuit. The ultimate circuit would allow me to test the oscillating frequency of all types of crystals from 100 kHz to 20 MHz . No tuning or parts changes would be needed; I'd just swap the crystal and watch the activity on some kind of meter. l'd also be able to measure the frequency as accurately as possible.

Over the years l've yet to see a circuit with this capability that could be duplicated without too much trouble and, most of all, some kind of explanation of why things were done as they were including all relevant technical details, complete with accurate parts information so you'd know what can and what cannot be substituted. Being in radio repair myself, I felt it would be very nice to have something to count on; not finding anything really suitable, I finally had to come up with some ideas myself. The circuit shown in fig. 1, which I call the OmniTek oscillator, shows the results. It may not be the ultimate oscillator circuit, but so far l've not seen one more versatile or better suited for my needs.

circuit description

Figure 1 shows the oscillator, Q1, and its associated parts: Q 2 (the buffer) and Q 3 (the emitter follower with dual output, one for the indicating meter and the other for a counter or other uses). l've seen variations of it before, but not with the 200:1 range this one has. The secret seems to be in the 10 mH choke (scramblewound miniature coil on a ferrite core) on the drain of Q1. Having tried all kinds of combinations, includ-
ing other types and makes of L1, I found that only the specified choke worked well and consistently every time.

Various versions of this oscillator - including a handheld test unit with meter and also one that replaced a master multiple crystal oscillator that used a tube (in that well known 6BH6 circuit) - were built.

The Activator button is for low activity or 3rd overtone crystals that may need an additional jolt to start. Most of the time, however, it isn't necessary and could certainly be omitted. If you don't want to, or cannot, calibrate the oscillator for a 32 pF load by plugging in a known crystal calibrated for 32 pF , omit capacitors C 1 and C4. Just be sure that the values of C2 and C3 are correct because their ratio, 51 to 56 pF , is very important for the correct operation of the oscillator. They're also the correct values for a very close approximation of a 32 pF load. Use 5 percent silver micas or NPO ceramics here. As a matter of fact, all capacitors in the vicinity of Q 1 - that is, $\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5$, C7 and C13 - should be either silver micas or NPO ceramics. (I prefer the ceramics because they're so much smaller.) The trimmer, C 1 , if used, is often an N450 or N750, though the temperature coefficient really doesn't matter much. All other capacitors may be standard, and will not affect the operation of the oscillator at all. All resistors should be at least $1 / 4$ watt, except the pot, which should be $1 / 2$ watt. The meter can be just about anything you can find, but full scale deflection sensitivity should not be much over $200 \mu \mathrm{~A}$; if it is, you won't get a good (i.e., more than half-scale) indication on the meter on the higher frequencies. The diode across the meter is used to limit the maximum voltage on the meter (to about 300 mV) because on crystals below 10 MHz the output may be high enough to damage the more sensitive meter movements. The

[^3]
fig. 1. 100 kHz to 20 MHz crystal oscillator (32 pF load).
counter output is tied to the wiper of the pot but could also be connected directly to the emitter of Q3, if desired.

To check the battery (with the terminals mounted downward in the case of the portable version), I drilled a small hole through the bottom below the + terminal. By sticking a probe through the hole (don't short the probe to the case) you can test the battery voltage without taking the box apart.

application

Although the unit is intended for checking crystals, it can also be used as a rough-and-ready signal generator or spotting calibrator. If you use it for spotting and you want plenty of harmonics, connect two diodes (1N4148) in parallel back-to-back across R2 (see insert in fig. 1). The only effect on the oscillator characteristics will be an increase in the harmonic output.

If you have a circuit board with soldered-on crystals, checking the crystals can be very difficult because taking them off the board very often destroys them. A much easier way is to cut the traces to the crystal and put two No. 18 sewing machine needles (mounting shaft ground off) in the oscillator socket holes. Press them against the traces of the board; the oscillator will indicate the crystal quality.

If you don't intend to use the circuit for this purpose, C13 can be omitted. It's there only to keep DC off the crystal socket. Omitting C13 allows you to test the battery voltage on the socket connected to the
drain of Q1 so no holes have to be drilled. Never try to insert a crystal without holding the box in your hand; if you do, static will damage Q1. A good indication of damage to $\mathrm{Q1}$ (gate leakage) is if the unit oscillates only on the higher frequencies. Although the PWR button can also be a switch, whenever you

Crystal oscillator parts list.	
C1	2.5-11 pF
C2	51 pF
C3	56 pF
C4	3 pF
C5	560 pF
C6	100 pF
c7	270 pf
C8	100 pF
C9,C10,C11	$0.01{ }_{\mu} \mathrm{F}$
c12	$0.47{ }_{\mu} \mathrm{F}$
C13	1500 pF
81	2.2 M ohms
R2	2.2 K ohms
R3	1 M onms
R4	4.7K ohms
85	500 ohms
R6	150 ohms
Q1	MPF 102
02	MPF 102
Q3	2N2222
All diodes: IN270	
$L 1$ is Hammond Number 1530 C 102 $10 \mu \mathrm{H}$ resistance is 1000 ohms ((ie 38 mA , maximum).	
Meter is $140 \mu \mathrm{~A}$ at 140 microvolts F.S.	
Minimum current at 100 kHz is about 6 mA . Maximum current at 20 MHz is between 14 and 22 mA , depending on the gain of Q1. Frequency shift over a supply voltage range from 5 to 10 VDC is less than 0.5 PPM. Battery is 9 VDC type, Number 1604. Some waveform distortion takes place below about 3 MHz . The ACTivate button is used to test and start 3rd overtone crystals that may need more feedback to start. The 5th, 7th, and 9th overtone crystals will probably not oscillate in this untuned circuit. Basic circuit (with C7 and C4 left out) is for a $32 \rho F$ load. Moter can be up to $200 \mu \mathrm{~A}$ full scale, though 50 to $100 \mu \mathrm{~A}$ are preferred. Minimum and maximum currents are for the whole circuit.	

check the battery make sure there's no crystal installed so the circuit uses maximum current.

Construction and wiring are not critical. Just try to keep the leads near Q1 as short as possible and install Q1 in a manner that will allow it to be replaced easily, because it's easily destroyed.

If you want to keep things simple and not use C1 or C4 or the ACT button, install C2 (51 pF) and C3 $(56 \mathrm{pF})$ and check your frequency. If it's too high, a gimmick wire capacitor across C2 will bring the frequency down. If the frequency is too low, replace C 2 with a 47 pF capacitor and try the gimmick capacitor again on C2 - that is, if you have a good calibrated crystal. If you don't, install the caps and forget about calibration. Also keep in mind that 3rd overtone crystals don't oscillate at precisely $1 / 3$ of their frequency because they're series-calibrated. It's understood, of course, that the indication on the meter is strictly relative. But after a bit of use, and a knob on the pot with a calibrated skirt, you'll get the hang of it pretty quickly and know what to expect.

Other variations of this circuit are possible. Since supply voltage and load variation don't, for all practical purposes, affect the frequency (keep your hands away from the crystal), further experimenting may be in order, perhaps with other 10 mH chokes.
ham radio

Authorized Dealers For KENWOOD \& ICOM Also displaying the popular accessories needed to complete a HAM STATION . . .

SPECIAL

NEW!
Kenwood
TM-2570A
$\$ 478.00$
In Stock

ARRL PUBLICATIONS • AEA PRODUCTS • AMPHENOL

- ALPHA DELTA • ASTRON • AUSTIN ANTENNAS • AVANTI
- BELDEN • BENCHER • B \& W • DAIWA • HAM-KEY
- HUSTLER • KLM • LARSEN • MIRAGE • ROHN
- TELEX/HY-GAIN • VIBROPLEX • WELZ • ETC.

OPEN SIX DAYS A WEEK
$\vee 120$
Telephone 617/486-3400, 3040
675 Great Rd., (Rie. 119) Littleton, MA 01460
1\%/ miles from Rte. 495 (Exit 31) toward Groton, Mass.

ST-8000 HF-MODEM

The ST-8000 HF MODEM is a high-performance, fully adjustable modulator/demodulator for use in high-frequency radio data systems. The HF Modem features fully adjustable frequencies and baud rates, memories, diversity, regeneration, print squelch, CRT tuning indicator, and multiple AM or FM detectors. The bandwidths of the input filter, Mark filter, Space filters, and post-detection filters are tracked with the selected data rate (10 to 1200 baud) to assure optimum signal recovery for all signals. Front panel parameters may be controlled from an external ASCII terminal or computer. A full complement of I/O interface options allows use of the ST-8000 with virtually any terminal and radio system. Install the HAL DS3100ASR CRT terminal and ST-8000 HF Modem in your communications system and enjoy the benefits of a data system designed for radio operators.
-Tuneable from 500 to 4000 Hz in 1 Hz steps

- Set 10 to 1200 Baud in 1 baud increments
- Four input band-pass filters
- 32 matched Mark and Space filter bandwidths
- Mark and Space 7-pole linear phase LP filters
- Filter BW and selection computed and set
by microprocessor front panel controls
- RTTY shifts from 40 to 3500 Hz
- Eight programmable non-volatile memories
- Split or transceive RX/TX tone selection
- FM or AGC-controlled AM signal processing
- -65 to +20 dBm dynamic range (AM or FM)
- Exclusive HAL Digital Multi-Path Correction (DMPC ${ }^{\text {TM }}$)
-M/S. Mark Only (MO) or Space Only (SO) detector modes using Adpative Threshold Detector (ATD ${ }^{\text {TM }}$)
- Adjustable Print Squelch and non-diversity Amplitude Squelch
- Exclusive HAL Infinite Resolution Diversity Control (IRDC ${ }^{\top M}$)
-Digital signal regeneration
- ASCII/Baudot code and speed conversion
-Quick Brown Fox and RYRY ... test message
generator
- Programmable Selective-call (SEL.CAL) printer control
- Transmitter PTT KOS control
- Antispace
-RS232C, MIL-188C, or TTL Terminal I/O
-LP1200 Option for polar or neutral loop
-8, 600, or 10 K ohm input impedance
-8 or 600 ohm output with adjustable level
-AFSK or FSK transmitter outputs
- Remote terminal or computer control of all demodulator parameters
- Exclusive HAL Spectra-Tune ${ }^{\text {TM }}$ and X-Y Mark/Space CRT tuning indicators with automatic trace on/off control
-100-130/200-250 VAC, 44.440 Hz power
-3.5 " high rack mounting cabinet ($14^{\text {* }}$ deep)
- Shielded and filtered for radio system use

TM Infinite Resolution Diversity Control (IRDC), Spectra-Tune, Digital Multi-path Correction (DMPC), and Adaptive Threshold Detector (ATD) are trade marks of HAL Communications: patents pending

Write or call for complete ST-8000 specifications. We think you will agree that it opens new frontiers in radio data communications. Contact the Government \& Commercial Products Division for price and delivery information.

HAL Communications Corp.
Government \& Commercial Products Division
1201 W. Kenyon Road
P.O. Box 365

Urbana, IL 61801-0365
(217) 367-7373 TWX: 910-245-0784

ham radio

surface-wave OTH radar - more QRM?

The Wireless Institute of Australia is reportedly developing an experimental over-the-horizon (OTH) radar that operates only over the sea. The radar transmits a vertically-polarized radio wave close to the sea surface, inducing electrical currents in the water. This causes the radio wave to adhere to the sea surface and therefore travel around the curvature of the earth. There is a possibility that the reflected energy will couple with the sea surface for the return journey. ${ }^{1}$

When I read this, it rang a bell; somewhere I'd heard that experiments have been run in the Caribbean in which long-distance VHF communication was established between ships by placing vertical Yagi antennas very close to the waterline. When the antennas were raised more than a few feet above the sea, the signals dropped in strength. The guess was that the layer of ocean moisture directly above the surface of the water provided the conduit for the radio wave.

That's all I know about the Australian report and the Caribbean experiment. If any reader knows more about the ocean-wave experiments, I'd certainly like to hear about it. How about a test between California and Hawaii?

the "underwater antenna"

Jokes and tall stories about underground transmitting antennas and antennas immersed in water have appeared in Amateur literature for decades. I've also heard that an antenna immersed in water will not only work, but because of the dielectric constant of the liquid, be markedly smaller in size, for a given radio wave-
length, than antennas not immersed in water. Sounds like a great idea - a 160-meter antenna in the back yard swimming pool!

In 1978 a British patent (GB2,001,804) was filed by the Plessey Company for an "underwater antenna" (fig. 1). The idea proposed in this patent is a variation of the principle of dielectric loading. According to an article in Radio Communication, the patent application reads, in part, as follows:

It has been proposed to submerge an antenna consisting, for example, of a metallic rod in water, but this has been found to suffer from the practical disadvantage that through contamination and absorption of carbon dioxide into the water, degradation results and the antenna efficiency rapidly deteriorates.
It is therefore proposed to use an antenna structure surrounded by water or similar acceptable liquid by including a sealed container shaped so that the element is completely surrounded by the liquid. This can take the form of a sealed glass or plastic container filled with water Isome anti-freeze can be added for low temperature conditions). The process of filling and searing the container is preferably carried out under chemically-clean conditions. ${ }^{2}$
The patent claimed that an antenna rod length of 15 cm (about 6 inches) used at 100 MHz gave an increase in signal strength of over 200 percent compared with a rod of the same length in free air.

Discussing this antenna, Pat Hawker, G3VA, says, "The idea of surrounding an element with water reminds me of a problem known to exist with some wideband television receiving arrays: a significant fall-off in
performance on the higher frequency channels when it rains and water collects on the elements. Clearly what is happening is that the resonant frequency of the array is being towered by the rain - further proof of the effects of dielectric loading. . . . But one foresees an unhappy operator reporting: 'Sorry OM, signals are fading, my antenna has sprung a leak.'"

great circle maps

Not easy to find, these days. I wanted a large Great Circle Map centered on San Francisco. But where to get it? I did a little footwork and found out that these maps can be obtained from the Office of Distribution Services of the Defense Mapping Agency (Hydrographic Center). The mailing address is: DMA-ODS, attention DCCP, Washington, DC 20315. Great Circle maps cost $\$ 5.50$ each and may be ordered by stock number from the catalog. To order the catalog, send $\$ 2.25$ to the address above and request catalog No. CAT-P2V10 which, according to the obliging individual who answered my call, is a "goldmine of information."

more on the 160 -meter end-fed antenna

In my last column I mentioned my long, 160-meter end-fed antenna, series tuned with a capacitor and matched to 50 ohms with a shunt coil. I've had it on the air for some weeks now and find it to be the best antenna that l've been able to put up on this particular piece of property, considering the zoning restrictions. Best DX to date has been Japan and Siberia, zone 19.

For those who have less space, the quarter-wave Marconi is still a good
antenna. It can be easily matched to a 50 -ohm feed system by the technique shown in fig. 2. The antenna is cut to your favorite operating frequency in the band by the formula: length $=234 / \mathrm{f}(\mathrm{MHz})$. For 1825 kHz , the antenna is about 128 feet, 3 inches (39.09 meters) long. If the antenna is entirely vertical (an unlikely assumption), the feedpoint resistance (R) at

fig. 1. Short "water-jacketed" dielectricloaded antenna as disclosed in UK Patent Application GB 2,001 804 by the Plessey Company.
resonance will be about 36 ohms. As more and more of the antenna lies in the horizontal plane, the feedpoint resistance decreases. In my tests, with most of the antenna wire running horizontally about 40 feet above ground, the feedpoint resistance ran close to 15 ohms.

You see that a simple L-network (A) can be used, made up of a series- connected coil and a shunt capacitor. The coil is quite small, but the capacitor value is rather large. The coil can be a small B \& W "Miniductor" about 2 inches (5.08 cm) in diameter, with a tapping clip for adjustment. Only 2.5 $\mu \mathrm{H}$ is required to do the job under all circumstances (see chart). Note that maximum inductance is required when the feedpoint resistance is one-half the value of the input resistance of the network.

The tapped coil presents no problem, but obtaining the shunt capacitor can be vexing. Most end-fed 160meter Marconi antennas fall into a feedpoint resistance range of 10 to 25
ohms. This calls for a shunt capacitor value of approximately 3500 to 1500 pF . The total capacitance can be made up of several "postage stamp" silver mica capacitors placed in parallel with a large variable capacitor. In my case, I have a 900 pF variable capacitor picked up at a flea market and a rotary switch that adds fixed capacitance at 500 pF per switch position.

This combination allows excellent antenna matching to be obtained all across the 160 -meter band. I use an SWR meter to determine antenna match (the meter being placed between the network and the short coax line to the transmitter). A practice run, tuning up every 25 kHz across the band, provides logging points for the coil and capacitor settings so that no time is lost when I want to QSY from 1810 kHz to work a UAO calling CO on 1915 kHz .
The chart also shows why it's sometimes difficult to get a good match to a low frequency mobile antenna. The matching coil becomes quite small for

fig. 2. L-network components for 160 meters and chart to determine component values for network A.
low values of feedpoint resistance and the shunt capacitor becomes quite large!

match for the HF mobile antenna

The 80- or 160 -meter mobile antenna presents a matching and loading problem. It's generally agreed that center loading provides the greatest operating efficiency for such an antenna, and many Amateurs have had success with an 8 -foot (2.43 meter) antenna loaded in this fashion. Unfortunately, the feedpoint impedance of such a loaded antenna on the 80 and 160 -meter bands, runs in the region of 20 ohms, of which only about 0.5 ohms is radiation resistance, the balance being made up of loading coil losses.
The B-network shown in fig. 2 is often used for mobile whip antennas. All that's required is a small shunt inductance in the range of 1.5 to 2.5 $\mu \mathrm{H}$ for 160 -meter operation. The series capacitance can be the actual antenna adjusted to provide a capacitive reactance at the base, that is, one that's slightly shorter than its resonant length.
Adjusting the antenna is quite simple. With the base matching inductor removed, a two-turn coil is connected between the base of the antenna and the grounding point on the vehicle directly below the antenna. A dip oscillator is used to set the antenna on frequency. Loading coil turns are adjusted to provide indication of antenna resonance. The base coil is now inserted in place of the dip oscillator loop and an SWR meter is placed in the coax line to the transceiver. Reduced power is applied to the antenna at the resonant frequency and the antenna is readjusted to resonance by pruning the loading coil. Lastly, the base inductor is adjusted for lowest SWR at the antenna resonant frequency.
The adjustments are slightly interactive and the presence of the experimenter in the immediate field of the antenna will tend to detune it a bit. The process sounds tricky, but it really isn't . . . it just takes a bit of patience and common sense.

fig. 3. Antenna has reactive feedpoint impedance if not resonant at required frequency. (A) Capacitive reactance if shorter and (B) inductive reactance if ionger.

fig. 4. Yagi driven elements shorter (A) and longer (B) than resonance can be matched to coax line with appropriate type shunt reactance.

the simplified L-network

The two matching networks shown in fig. 2 can be redrawn as shown in fig. 3 in which the series component is represented by an off-resonant antenna. Figure 3A illustrates the case in which the antenna is shorter than the resonant length. Figure 3B shows the case in which the antenna is longer than resonant length. The circuit shown in fig. 3A is used in some Yagi beam antennas, where the inductor takes the form of a coil, or hairpin, placed across the feedpoint in shunt with the driven element. In this case, the driven element is shortened slightly to provide a capacitive reactance at the feedpoint.

By using the reactance of the antenna element as one arm of the L network, either by lengthening or shortening the element past the resonant point, an effective and inexpensive matching system that requires only one additional shunt element either a capacitor or an inductor - can be made.

Use of this matching scheme with a balanced Yagi element is illustrated in fig. 4. In fig. 4A the driven element is made slightly shorter than resonance and an inductor is placed across the feedpoint. The inductor may take the form of a balancing device so that impedance transformation and transformation to a coaxial line is accomplished with the same device. ${ }^{3}$ Most high frequency commercial matching devices take this form because it's easier to make a waterproof inductor that will withstand high power than a suitable capacitor. (Matching systems of this general type are discussed in detail in the new edition of the Beam Antenna Handbook.*)

the EME directory

A reprint of the WA1JXN $144-\mathrm{MHz}$ EME (Moonbounce) directory is now available. Listing EME operators worldwide, including their addresses and the equipment they use, this 16 -page com-

[^4]pendium is available at no cost lexcept postage). Send five first-class stamps (or 5 IRCs) - no envelope, please I'll supply a large one. Address your request to me at EIMAC, 301 Industrial Way, San Carlos, California 94070.

references

1. B. Martin, "The Woodpecker Project," Amateur Radio (Australia), August, 1985, page 13.
2. Pat Hawker, G3VA, "Technical Topics," Radio Communication, (England), September, 1985, page 708. 3. Bill Orr, W6SAI, and Stu Cowan, W2LX, Beam Antenna Handbook. pages 164 175.
ham radio

short circuits

reflector antennas

Eqn. 1 in W1JR's February column ("Reflector Antennas, Part 1," page 54) should be corrected to read as follows:

$$
\begin{aligned}
G & =10 \log \left[0.55 \cdot 4 \pi A \lambda^{2}\right] \\
& =10 \log \left(6.9 \mathrm{~A} \lambda^{2}\right)
\end{aligned}
$$

calibrated S-meter

The value of the Pin 12 resistor shown in fig. 3 of W7SX's article, "A Calibrated S-Meter" (January, page 23) is 2000 ohms.

upside-down battery

In fig. 8 of YB9ATA's February article, "Two-Tone Signal Generator," the battery was inadvertently shown upside-down.

SHORT CIRCUIT HOTLINE

Building a current ham radio project? Call the Short Circuit Hotline any time between 9 AM and Noon, or 1 to 3 PM - Eastern time - before you begin construction. We'll let you know of any changes or corrections that should be made to the article describing your project.
(See "Publisher's Log," April, 1984, page 6, for details.)

603-878-144I

businesses and programmers... then made it VERY EASY for novices to learn and use. For programmers, this machine has easy-to-use powerful commands and 60 K of usable memory. And you can hook up as many as four disk drives.
FOUR highly popular programs are BUILTINTO the machine. And they quickly interact with each other! Use the FILE MANAGEMENT program for mailing lists, inventories, personal or business files, etc. Write and edit letters, reports, student papers with the WORDPROCESSOR before final printout.
Do the books, budgets, sales forecasts, profit/loss statements, etc., with SPREADSHEET program, Every time you change a number, Plus/ $4^{1 \mathrm{M}}$ immediately recalculates entire spreadsheet. Combine the calculations with WORDPROCESSOR text.
Use GRAPHICS program to draw simple or complex shapes. GRAPHICS works with SPREADSHEET or WORDPROCESSOR, so you can display calculations in up to 128 colors ... or include graphics in your text.
Touch a key to go from one built-in program to another. Additional software is available for a variety of businesses or personal uses. Games available, too!
ADDITIONAL FEATURES: Data base of 99 records. Computer holds 99 lines of text before it must be transferred to disk drive for storage. Excellent terminal for use with modem. Split screen and windowing capabilities. Compatible with all Commodore ${ }^{*}$ hardware except joystick and dataset. NOT compatible with C64 software.

Includes Commodore ${ }^{*}$ warranty.

Item H-997-5035-001 Ship. handling 98.00

DISK DRIVE

(Compatible with Plus/4 ${ }^{\text {'u }}$)
A famous U.S. brand, but we're not permitted to print the name Factory reconditioned and warranted. Intelligent, high-speed. 2K RAM, 16 K ROM. Maximum storage of 170 K formatted data. 35 tracks. Uses 51/4" floppy diskette; single sided, single density (double density can be used, but not needed). Serial interface. Second serial port for chaining second drive or printer. Data transfer rate of 400 bps Compatible with C64, VIC 20, SX64, Educator 64, C16 and Plus $/ 4^{\mathrm{TM}}$.
Mrr. List When New: ${ }^{\mathbf{5}} \mathbf{2 6 9 . 0 0}$
Closeout Price

Item H-997-3553-013 Ship, handling $\$ 8.00$

Credit card customers can order by phone, 24 hours
 VISA a day, 7 days a week

 14605 28th Ave. N./Minneapolis, MN 55441-3397 Send_Commodore: Plus $/ 4^{\mathrm{IM}}$ Computer(s) Item H. 997-5035-001 at $\$ 79$ each plus $\$ 8$ each for ship, handling Send Disk Drive(s) ftem H-997-3553-013 at $\$ 149$ each plus 58 each for ship, handling
(Minnesota residents add 6\% sales tax Allow $3-4$ weeks for delivery Sorry, no COD orders)
\square My check or money order is enclosed. (No delays in processing orders paid by check, thanks to TeleCheck.)
Charge to my: \square MasterCard, \square VISA
Acct No $-\operatorname{Exp} \quad 1$ PLEASE PRINT CLEARLY
Name
Address
City
State

GPRING SPECIALS POW:RFUL PAGKET.

New rigs and old favorites, plus the best essential accessories for the amateur.

3621 FANNIN S
HOUSTON TX 77004-3913
CALL. FOR ORDERS
1.713-520-7300 OR
$1.713-520-0550$
ALL ITEMS ARE GUARANTEED OR SALES PRICE REFUNDED

EQUIPMENT

Call for prices on all Kenwood Kenwood TS940S, contester's delight Call com R7000 $25.2000 \mathrm{MHz} \quad 79500$ Alpha (EIO) List-15\% comilic3200 48995
Santec ST20T Handi Talke
Pegency UC102 VHF 2 Channel Handi Talke 15000 icom IC735 74900
Ten Tec 2510 (Easy OSCAR) 489.00

ACCESSORIES
B8W VIEWSTAR 8995
Hell BM10 Boom Mike headset Stock
CSI Pivale Patch III 46995 LUKE 7 autor 2500 Bird 43 Wattmeter Gall
Bird Elements H/59 00 A F/48 00 10995
Dawa CN620B, 20-200, 2000W 129.00 Stabylex 35SR, 35 amp 14900
Alinco FIH 2300- Excellent buy 79.00
52900
Nye MB5. A (for the big boys') 5495

KEYS

Less 10\%
Bencher \& Vibroplex
Bencher is now improved Screws 8 springs, all stainless teel and extra hand polishing
Vibroplex Carrying Case
2000 w/purchase MF, J Super keyboard \#496 169.00 Nye ESK-001 Keyer

TUBES

 5800Collins \& Drake Replacement fubes .stock

GE 6146 B

1195
Eimac 3-5002 109.95
GE Industrial Tubes Cal
GE 12BY7A $\quad 600$

GE 6JS6C

600
GE 6JS6C
1195

BOOKS

Ne stock SAMS, TAB ARRL RSGB Ameco Radio
Pubs
Some of the best buys are the RSGB book

CALRAD $65-287$ SWR Relative Power Meter 32.95

$3.150 \mathrm{MHz} . \mathrm{KW}+$

PACKET POWER

AEA PK 64, does RITY. ASCII,AMIOR also - 19900 AEA PK 80 TAPR II
NEW Kantronics Packet I 19900 Icom 271A Great packet radio Call

SERVICES

Alignment, any late model rig

QUANTITY DISCOUNTS Save 206.00
Want a good discount? Get three of your iriends and ord er Madison's special four lot prices. For example ICOM IC27A
Call for four lot prices on other rigs

ANTENNAS

sopole. 4495 A4 26900

402CD

26900

-279.95

215 WB New. 15 EL .2 M bearn
8400
AOP.1. Complete Oscat Antenna
Butternut HF6V 80.10 vertical 125.00 125.00

HF2V, 80 \& 40 vertical 11900
HF4B
18900
Hustler G7-144
11995
Ham4 Rotator, T2X, CD45-2 Call
KLM HF World Class Series Antennas Call Don Alpha Delta Twin Slopet 4900
Coax Seal
490
Coax Seal
20010
Hy-Gain TH7DXS
Less 1000
48900
$\begin{array}{ll}\text { Exploret } 14 & 34900 \\ \text { Discover } 1 \text { element } 40 \mathrm{M} & 16900\end{array}$
2 element 40 M
3 element only
369.00

HG52SS 52 ft crankup tower 119900
Prepaid freight when you order other Hy-Gain terns with lower
KLMKT 34A 339.00
$40 \mathrm{M}-2$
29900

OTHER ANTENNAS

Larsen Kulduck
Avanti AP151 3G on Glass Antenna $\quad 36.00$
Anteco 2M, 5/8 Mag Mount. Comp $\quad 25.00$ Avantı APR450.5G on glass $\quad 3900$
Philly Stran
SURPLUS
Collins parts 75S/325/KWM2/75A4/KWS-1 Specity part No.
24 PinSoldertal dip sockets 25/each
Signal Batteries Exact Replacement
Signal Batterie
$2500 /$ each
$150 \mathrm{MFD} / 400 \mathrm{~V}$ DC
195
$15 \mathrm{Amp} / 400 \mathrm{~V}$ tull wave bnidge rectitier $\quad 195$
$25 A / 1000$ PIV Epoxy diode $\quad 29$ each or $19.00 / 100$
$\begin{array}{lr}0015 / 10 \mathrm{KV} & 1.95 \\ 3 \mathrm{~N} 201 & 95\end{array}$ 3 N 201
N201 - -95
$\begin{array}{lr}4 \text { inch ferrite rod } & 195 \\ 365 \mathrm{pF} \text { cap } & 195\end{array}$
$\begin{array}{lr}365 p F \text { cap } & 195 \\ \text { Sanyo AAA,AA Nicads witabs } & 2.50 \text { ea }\end{array}$
$\begin{array}{lr}\text { Sanyo AAA,AA Nicads witabs } & 250 \text { ea } \\ 2.45 .6 .8 \text { pin mic plugs } & 3.00\end{array}$
Drake-Collins mike plug
3.00
200

Close out on rigs \& accessories All the lime Call
We may have what you're looking for

BELDEN

9913 low loss solid center foil/braid sheid
$45 \mathrm{c} / \mathrm{f}$ 8214 FG8 Foam
$3 \mathrm{c} / \mathrm{ff}$
8327 RG8
$37 \mathrm{c} / \mathrm{f}$
800014 Ga stranded copper ant wire $\quad 13 \mathrm{c} / \mathrm{ft}$
84488 conductor rotor cable $-31 \mathrm{c} / \mathrm{ft}$
9405 Heavy duty 2-16 Ga 6.18 Ga $\quad 52 \mathrm{c} / \mathrm{f}$
Ga
8403 Mic Cable. 3 condctr $\&$ slield $\quad 80 \mathrm{c} / \mathrm{f}$
100 feet 8214 w/ends installed $\quad 45.00$
86697116° timed copper brand $\quad 1.10 / \mathrm{tt}$
International Wire RG214, non mi good cable 70c/it International Wire 9086 exact replacement for Belden 9913

AMPHENOL

831SP.PL 259 Siverplate
UG176 reducer RGBX
831 J Double Female UHF
$82-61$ N Male
82.97 N Female Butkhead
82.63 Inline Fernale N
$82-98 \mathrm{~N}$ elbow
1.25
$\begin{array}{r}1.25 \\ 30 \\ \hline\end{array}$
30
200
200
300
300
300
400
900
500
TOWER ACCESSORIES
1/4*EHS Guy cable. Rohn US 1000 It 25000
$3 / 16^{\circ}$ E.H.S cable
21000
$1 / 4^{\text {" }}$ Guy Cable 6100 \# 7×7 strand import $15 \mathrm{c} / \mathrm{tt}$
3/16* Guy Cable, 3700 \# 7×7 strand. import 12 c it
$3 / 8 \times 6$ E8.J Tumbuckle
$3 / 16^{\prime \prime}$ Wife Rope Clips
1/4" wre clips
1/4 Thumbles
795

Porcelain 5000 Guy Insulator (3/16)
Porcelain 502 Guy insulators (1/4)
3.39

COMPUTER STUFF

Kantronics UTU.XT

Fils any computer (even yours!)

Soltware ayaitable
Morse University (Greal CW program for C-64) - 3900

USED EQUIPMENT

All equipment. used, clean, with 90 day warranty and 30 daytral Six months full trade against new equipment Sale price refunded if not satistied.

POLICIES

Minimum order \$1000 Mastercard, VISA or C OD All prices FOB Houston, except as noted Prices subject to change without notice Items subject to prior sale Gall any. time to check the status of your order. Texas residents add sales tax All tems full factory warranty plus Madison warranty
KS60 is January's Winner

CLOSE OUT CORNER

AEA KT $3 \$ 99$
Butternul Mark-30 \$25
Collins 35ID 2 KWM 2A motsle mount \$99
Kantronics MicroRTTY $\$ 50$
Kenwood BS 5 \$19
Microlog ACT - $\$ 299$
Telex Pro-com $350 \$ 59$. Pro-coin $300 \$ 39$

DON'S CORNER

80 meter CW is fun for me agair with my new ORION rotatable dipole with remole tuiner model CDO80 It aiso covers 75 meters for you phone fanatics it's priced at $\$ 439$ and is UPS shippable. The antenna is 48 teet long and weighs 25 lts The major advantage of this antenna si the ends are off the ground and you get lower norse reception

FEBRUARY WINNERS

N8FEH N4KDF

computer control of ICOM R-71, 271, 471, and 751 radios

Extend performance and versatility by combining analog and digital techniques

Does the idea of using a computer to control your radios conjure up images of driving elaborate remote bases with touchtone commands from a handheld? It needn't. There are less exotic uses of computer control that can really make things easier around the shack.

What else can you do with computer control? Suppose you want to monitor a net, a beacon, or a bulletin, but can't be near the radio. No problem - get a computer. It can turn on the radio at a prescribed time (say 18 minutes past the hour), tune it (perhaps to WWV), turn on a tape recorder (to record a minute's worth of propagation bulletin), and then turn everything off. You can listen to the tape at your convenience.

Working satellites such as OSCAR-10 is another area in which a computer can generally simplify operation. If you've ever listened to an Amateur satellite, you've found the passband filled with "aaahhh" or machine-gun strings of dits. Why?

To use a satellite, you must transmit on one band and receive on another; few Amateurs are adept at operating two radios simultaneously. To complicate matters, the radios are on opposite sidebands . . . to tune, you turn one knob clockwise and the other counter-clockwise - a trick easily learned by 5 -yearolds, but not by adults. Doppler shift also has to be accounted for. As a result, Amateurs spend half their time trying to find their signal in the satellite's passband. The solution? Get a computer. Tune the receiver and let the computer read its frequency and tune the transmitter. A piece of cake!

Interested in these and other applications of computer-controlled radios? Computer control of

ICOM's latest series of radios can be an interesting project, and requires only some simple hardware. Read on.

computer-controllable radios

ICOM has been manufacturing computer-controllable radios for many years, beginning with the 701/ 211/245 series and continuing with the R-70/720/251/ 255/260/451 series. Control of the earlier radios was generally limited to changing frequency and mode. ICOM's latest series of radios, the R-71, 751, 271, and 471, allow additional radio functions to be controlled by the computer, including the 32 memories. The newly announced 1271 will almost certainly be controllable in the same way. Like earlier ICOM radios, the interface uses a parallel handshake, with all radios daisy-chained on a common bus. Unlike earlier radios, the computer interface isn't included with the radio, but must be purchased separately. The interface is the EX-309 Microprocessor Interface Connector, which sells for $\$ 37$ and consists of a small board, approximately 2 inches by $21 / 4$ inches (5.08 by 5.72 cm), containing two octal latch ICs, a voltage regulator, and a 24 -pin female IEEE-488 (Centronix-type) connector. (Previous ICOM radios used pins on the 24 -pin Molex accessory connector for computer interface signals.)

required interface board

The EX-309 interface allows external 8-bit data to be gated onto and off of the radio CPU's internal 8 -bit data bus. Signals available on the external connector are an 8 -bit bidirectional data bus, a service request ($\overline{\mathrm{SRO}}$) line, read (RP) and write (WP) request lines, a data valid ($\overline{\mathrm{DAV}}$) line, and squelch and send lines that parallel signals on the Molex connector (see fig. 1). Ground and 13.8 volts (100 mA maximum) are also available on the connector. You'll need 14 TTL lines on your computer: eight bidirectional, four output, and two input. If you don't already have these lines, you can add them using a parallel interface adapter chip (e.g., a $6522,6820,6821$, or 8255) or build them out of TTL latches.

The EX-309 is easy to install once you realize that
By Richard Bisbey II, NG6Q, Suite 1001, 4676 Admiralty Way, Marina del Rey, California 90292-6695

fig. 1. Radio to computer connection.
you can get the connector through its mounting hole if you insert it "end first. " (You'll have to remove either the metal plate or the rubber dust cap covering the mounting hole first, of course.) The board mounts on the rear left bottom of the 271/471 and on the rear right side of the 751 . There are RF chokes on the EX-309 board. However, you may want to insert ferrite beads in the lines to minimize external signals entering the radio and being re-radiated between the connector and the board. If you go to the trouble of desoldering the connector, you might consider replacing it with a DB-25, which takes the same space, is cheaper, and is more readily available. You don't have to worry about maintaining compatibility with other accessories, since the only ICOM accessory that uses the EX-309 is the CT-10 RTTY TU, which is not currently being imported into the United States by ICOM America. If you stick with the original connector, you can get its ribbon connector male mate for $\$ 7.95$ from Jameco, 1355 Shoreway Road, Belmont, California. Be sure to specify the spring type, although the screw type will work satisfactorily.

The EX-309 has three connections inside the radio: data bus (P4), control bus (P5), and send/squelch (J3). For the 271/471, P4 goes to Logic Board J3, P5 to Logic Board J1. For the 751, P4 goes to Logic Board J15, P5 to Logic Board J10. If you are installing the EX-309 in a 471, be sure to correct your schematic by adding the 13.8 -volt line to Pin 9 on P5. The third connection, from J 3 to the send/squelch lines, is made to Front Panel P12 on the 271/471, to the AF VR board on the 751. This connection is not listed in the instruction sheet that comes with the EX-309. If you have more than one radio on the external bus, you probably won't want to make this third connection. If you were
to make the third connection, the squelch and send lines for all the radios on the bus would be connected in parallel, and you couldn't remotely key individual radios or tell which radios were or were not squelched. Also, the squelch line on the 751 is 8 volts and requires a 5.1 volt zener diode to ground at the connector to make it TTL-compatible.

Once installed, the interface is easy to use. The protocol to use in communicating with the radio is as follows:

1. Drop $\overline{S R Q}$ to $O V$ (to get the radio's attention).
2. Use procedure A or B (see below) to send or receive a byte.
3. If not finished, go back to step 2.
4. Raise $\overline{\mathrm{SRO}}$ to 5 V (to tell the radio you are finished).

To send a byte to the radio, follow Procedure A, as follows:

1. Set 8 bits of data on the data bus.
2. Raise WP to 5 V (to tell the radio you are writing data to it).
3. Wait for the radio to drop $\overline{\mathrm{DAV}}$ to $O V$ (to $A C K$ receiving the data).
4. Drop WP back to OV (to ACK the ACK).
5. Wait for the radio to raise $\overline{\mathrm{DAV}}$ to 5 V .

To receive a byte from the radio, follow Procedure B, as follows:

1. Raise RP to 5 V (to tell the radio you are reading data from it).
2. Wait for the radio to drop $\overline{D A V}$ to $O V$ (to ACK sending the data).
3. Get 8 bits of data from the data bus.
4. Drop RP back to OV (to ACK receiving the data).
5. Wait for the radio to raise $\overline{\mathrm{DAV}}$ to 5 V .

Only one command can be issued to the radio each time the $\overline{\mathrm{SRO}}$ line is lowered. Also, there is a mini-

UNPRECEDENTED WIDE FREQUENCY RANGE: Covers 140.000 153.000 MHz in steps that can be set to any multiple of 5 kHz up to 50 kHz .
CAP/MARS/NAVY MARS, BUILT IN: The wide frequency range facilitates use of CAP and ALL MARS FREQUENCIES including NAVY MARS. COMPARE!
IINY SIZE: Only 2 inches high, 51 inches wide and 7 V a inches deep!
MICROCOMPUTER CONTROL: Gives you the most advanced operating features available.
UP TO 11 NONSTANDARD SPLITS: COMPARE this with other units!
20 CHANNELS OF MEMORYIN TWO SEPARATE BANKS: Retains frequency, offset information, PL tone frequency.
DUAL MEMORY SCAN: Scan memory banks separately or together. All memory channels are tunable independently. COMPARE!
MEMORY SCAN LOCKOUT: Allows you to skip over channels you don't want to scan.
TWO RANGES OF PROGRAMMABLE BAND SCANNING: Limits are quickly reset. Scan ranges separately or together with independently selective steps in each range. COMPARE!
BUSY SCAN AND DELAY SCAN: Busy scan stops on an occupied channel. Delay scan provides automatic auto-resume. discriminator centering (AZDEN ExCIUSIVE patent): Always stops on frequency desired when scanning. PRIORITY MEMORY AND ALERT: Unit constantly monitors one memory channel for signals, alerting you when channel is occupied.

LITHIUM BATIERY BACKUP: Memory information can bestored for up to 5 years even if power is removed.
FREQUENCY REVERSE: Allows you to listen to repeater input frequency.
ILLUMINATED KEYBOARD WITH ACQUISITION TONE: Keys are easily seen in the dark, and actuation is positively verified audibly. CRISP, BACKIIGHTED LCD DISPIAY: Easily read no matter what the lighting conditions!
DIGITAL S/RF METER: Shows incoming signal strength and relalive transmitter power.
MUITI-FUNCTION INDICATOR: Shows a variety of operating parameters on the display.
FULL 16-KEY TOUCHTONE PAD: Keyboard functions as autopatch when transmitting.
MICROPHONE CONTROIS: Up/down frequency control and priority channel recall.
PL TONE GENERATOR BUILT IN: Instantly program any of the standard PL frequencies into the microcomputer. COMPARE! IRUE FM, NOT PHASE MODULATION: Unsurpassed intelligibility and audio fidelity. COMPARE!
HIGH/LOW POWER: Select 25 watts or 5 watts output - fully adjustable.
SUPERIOR RECEIVER: Sensitivity is better than 0.15 microvolt for $20-\mathrm{db}$ quieting. Commercial-grade design assures optimum dynamic range and noise suppression. COMPARE!
DIRECT FREQUENCY ENTRY: Streamlines channel selection and programming.
OTHER FEATURES: Rugged dynamic microphone, built-in speaket, mobile mounting bracket, remote speaker jack, and all cords. plugs. fuses and hardware are included.

[^5]
MANUFACTURER

JAPAN PIEZO CO., LTD.
1-12-17 Kamirenjaku, Mitaka. Tokyo. 181 Japan

Orders \& Quotes Toll
Free: 800-336-4799
(In Virginia: 800-572-4201)
information \& Service (703) 063100
Service Department (703) 4948750
t3a40 jetterson Davs Hoghwer
t3uto jetierson Dons Heghn
Woodondgr, Vieyna gzig
Store Hours Mri $10 \mathrm{am}-6$ om
WF $10 \mathrm{am}-8 \mathrm{pm}$
Sat $10 \mathrm{am}-4 \mathrm{pm}$
Sat $10 \mathrm{am}-4 \mathrm{pm}$
Order Hourt $\mathrm{Mf} 9 \mathrm{am}-7 \mathrm{pm}$
Sat $10 \mathrm{am} \rightarrow \mathrm{pm}$

D ICOM

New IC-735
Compact HF Transceive
Cail for Introductory Price
IC-751
$\mathrm{HF} \times \mathrm{CVR} / G$ en Coverage Receiver

Dayton Booths $259-263$, Apri
 Much More in stock! Send \$1 for our New 1986 Buyer's Guide-Catalog.
 KENWOOD
 New TS-440
 HF XCVR with built-in Antenna Tuner Call for intro price

 TS-940 HF XCVR/Gen Coverage Receiver New TM-2530A/50A/70A 85/45/70-watt mobile 2 m rigs.
 New 2018 In Stock 2 m Mobile, 45 -watts
 Handhelds 41 A I Call for quotes

 FT-757GX

HF XCVR/Gen Coverage Receiver
More Radios
Encomm/Santec KDK Ten-Tec
More Helpers
Marine radios by Regency Polaris and Icom

- Commercial Land Mobile by Yaesu and others
Telephones by ATST, Cobra.
Southwestern Bell, and Panasonic
* CBs by Uniden, Midiand, Cobra
- Radar Detectors by Uniden and Whistler

Visit Our New New England Store sates Rond
Salem, New Hornoshire 03079 New Hampuhire Orders, intormation 8 Service (003) an83750 New Ingland Orders: 300-237-9047 tore Houn Mondior-Cosect tif 18 nocon- 8 pm Sun 12 nooon-5.

Antennas

Hf, VHF, SWL, scanner, marine, s commercial for Mobile or Base Cushcraft
Mini-Products B\&W Van Gorden KLM AEA Butternut Mosley Hustier Telex Hy-Gain Larsen

TOWETS
Unarco-Rohn, Hy-Gain, Tri-Ex Ask for special quotes on package deals including cable, guys, connectors, turnbuckles, etc

Accessories

Kenpro
Alliance B\&W
Telex Hy-Gain Daiwa MFJ Bencher Amphenol Astron B $+K$ Precision Welz

Amplifiers
Vocom
Diawa
Ameritron Amp Supply TE Systems Tokyo Hy-Power

Computer Stuff Packet Radio Hardware and Software or RTTY/Morse Hal Kantronics AEA Microlog MFJ
Ham Data Amateur Software.

$33 \mathrm{~cm} . \bullet 23 \mathrm{~cm} . \bullet 13 \mathrm{~cm}$.

DOWN EAST MICROWAVE					
$\begin{aligned} & 2345 \mathrm{LY} \\ & 2445 \mathrm{LY} \\ & 1345 \mathrm{LY} \\ & 3333 \mathrm{LY} \\ & \text { above an } \\ & \text { All alumi } \\ & \text { Add } \$ 8 \end{aligned}$	45 el 45 ei 45 el 33 el ennas ar um and 11 west	toop Yagi loop Yagi loop Yagi loop Yagi assembied stainless con of Rockies)	1296 MHz 1269 MHz 2304 MHz 902 MHz and tested struction. Kit per antenna	$\begin{aligned} & 20+\mathrm{dBi} \\ & 20+\mathrm{dBi} \\ & 20+\mathrm{dBi} \\ & 18.5 \mathrm{dBi} \\ & \text { also availa } \\ & \text { r UPS ship } \end{aligned}$	
$2 \& 4$ way power dividers, complete arrays available 2316 PA Lineat Amp iw in 18 w out $1296 \mathrm{MHz} 135 \mathrm{~V} \$ 230$ 2335 PA Lineat Amp 10w in 36w out $1296 \mathrm{MHz} 135 \mathrm{~V} \$ 280$ include $\$ 5$ for UPS Blue - 48 states.					
	DOWN EAST MICROWAVE Ball Olson. W3HOT				

- 126

マ 127
mum time the $\overline{\operatorname{SRO}}$ line must remain high before it can again be lowered as well as a minimum time between lowering WP and raising $\overline{\text { SRO }}$ when sending data to the radio. This limits the rate at which commands can be issued. Generally, the radios can accept up to about 50 commands per second. Thus, the minimum dwell time for frequency-hopping, spread-spectrum uses would be 20 msec (subject to the settling time of the radio's PLL). Finally, if a radio fails to acknowledge an RP or WP within one second, it is either not connected or not powered on, or is simply otherwise occupied (e.g., scanning).

commands and their operands

Each 8-bit byte on the data bus is actually two 4-bit nibbles. The four most significant bits of each byte encode the command (or operation code). They are:

- 1 x -Band Data (read only).
- $2 x$-Frequency Data (read/write).
- $3 x$-Mode Data (read/write).
- $4 x$-Offset Data (read/write).
- $5 x$ - Set Memory/VFO (write only).
- $6 x$-Memory Read/Write (write only).

The four least significant bits of each byte encode address and data operands. The first hex digit is the radio's address. It is always written to the radio. Valid addresses are:

- x1-HF $\quad-$ R-71 or 751
- x2-50 MHz
- x $3-144 \mathrm{MHz}-271$
- x $4-220 \mathrm{MHz}$
- $\times 5-440 \mathrm{MHz}-471$
- x6-1200 MHz - 1271
(Too bad ICOM didn't leave $\times 6$ for 902 through 928 MHz and move 1200 MHz to $\times 7$.) Data operands follow the address, and, depending on the command, may be either written to or read from the radio. Each data operand consists of a string of hex digits delimited by " D " and " E." The radio will ignore all write data between the address operand and the first delimiter, "D."

specific command information

The following is a description of each command along with its operands. The actual hex bytes exchanged with the radio are shown, with the command in the high nibble and the operand values in the low nibble.

Command 1 - band data. This command allows the computer to read the frequency range of a radio. The frequency range is returned as:
1D 1 m 1 m 1 m 1 m 1 m 1 m 1 E 1 D 1 n 1 n 1 n 1 n 1 n 1 n 1 E where mmmmmm and nnnnnn are the upper and lower frequency limits in tens of kHz . To request the frequency range of a 471, send the hex byte 15 (com-
mand 1, address 5), and then read back the following sixteen bytes:

1D 101414191919 1E1D 101413101010 1E i.e., 04449.99 to 0430.000 MHz .

Command 2 - frequency data. This command allows the computer to read or write the radio's frequency. The frequency is a nine-digit number; the most significant digit is GHz , the least significant is tens of Hz . Attempts to set a radio to a frequency outside its band limits are ignored. To set a 271 to 145.67893 MHz , send:

23 2D 2021242526272829232 E i.e., $\quad \begin{array}{lllllllll} & 1 & 4 & 5.6 & 7 & 8 & 9 & 3 & M H z\end{array}$

The radio will set unsent digits to zero, so the sequence: 21 2D 202021 2E would set a 751 or R-71 to $W W V$ at 10 MHz . To read a radio's frequency, send hex 2\# (where \# is the radio's address) and read back eleven bytes (2D, nine digits with 2 in the leftmost nibble, and 2E).

Command 3-mode data. This command allows the computer to read or write the radio's operating mode. Operand values are:

$$
\begin{aligned}
& 0-\text { LSB } \\
& 1 \text { - USB } \\
& 2 \text { - AM } \\
& 3-C W \\
& 4-\text { RTTY } \\
& 5-\text { FM } \\
& 6 \text { - CW-Narrow } \\
& 7 \text { - RTTY-Narrow } \\
& 8 \text { - LSB } \\
& 9 \text { - USB } \\
& \text { A - AM } \\
& \text { B - CW-Narrow } \\
& \text { C - RTTY-Narrow } \\
& \text { D - FM }
\end{aligned}
$$

Not all modes are possible on all radios. For example, the 271 and 471 lack RTTY capability. Thus, 4, 7 , and C wouldn't make sense for those radios, and, in fact, would leave the radio in an indeterminate mode. The sequence 31 3D 3C 3E would set a 751 to RTTY-Narrow, while the sequence 353D 31 3E would set a 471 to USB. To read mode data, send hex $3 \#$ (where \# is the radio's address) and read three bytes (3D, one byte of mode with 3 in the leftmost nibble, and 3 E).
Command 4 - offset data. This command allows the computer to read or write the DUPLEX offset. It is similar to the OW button on the 271/471. The operand is a five-digit number, the offset in kHz . The sequence:

43 4D 40404640404 E
i.e., $\quad 0 \quad 0 \quad 6 \quad 0 \quad 0 \quad \mathrm{kHz}$.
would set the offset of a 271 to 600 kHz (we didn't really need the last two zeros), while the sequence:

454 D 40454 E would set the offset of a 471 to 5 MHz . You can also read back an offset.
The Offset command is of dubious value. First, there's no way to specify the offset direction or turn DUPLEX on or off. DUPLEX operation can be controlled only by front panel buttons. Also, while DUPLEX values can be stored and retrieved on the 751, DUPLEX operation is not a supported feature! The DUPLEX button on the front panel of the 751 is really SPLIT - i.e., you transmit using one VFO and receive using the other.
Command 5 - set Memory/VFO. This command allows the computer to switch between a VFO and the 32 memories. It is write-only. Memory/VFO is denoted by two hex digits. The values are:

$00-$ VFO	$11-17$
$01-1$	$12-18$
$02-2$	$13-19$
$03-3$	$14-20$
$04-4$	$15-21$
$05-5$	$16-22$
$06-6$	$17-23$
$07-7$	$18-24$
$08-8$	$19-25$
$09-9$	$1 A-26$
$0 A-10$	$1 B-27$
$0 B-11$	$1 C-28$
$0 C-12$	$1 D-29$
$0 D-13$	$1 E-30$
$0 E-14$	$1 F-31$
$0 F-15$	$20-32$
$10-16$	

The sequence: 51 5D 51535 E would set a 751 to memory 19 , while the sequence: 535 D 50505 E would set a 271 to the current VFO. Note that this command gives you no way to switch between VFOs. You're stuck with whatever VFO you started with. Also, the command is write-only, so you can't read the current VFO/Memory - your program will have to remember it. Finally, this command is an example of the radio not really using " E " as a delimiter. If it did, 0 E and 1 E would not be valid operands.
Command 6 - Memory read/write. This command allows the computer to transfer information between the VFO and memory. The command is write-only and is functionally identical to the WRITE and $\mathrm{M}>\mathrm{VFO}$ buttons on the front panel. The operand is a single digit:
1-VFO to Memory
2 - Memory to VFO
The sequence: 63 6D 61 6E stores the information in the current memory on a 271.

a sample basic program

Figure 2 is a simple BASIC program to control a 271 and 471 for use with OSCAR-10. The program

```
00:0 REM 6522 addresses, constants, and masks
0020 DPORT = &HFF4F % data port address
0030 CPORT = RHFF40
0040 WP = 8H02
CO%O RP = 8HO1
0010 DAV = 8H80
OORO DOIR = 8HFF43
00:%0 DOUT = &HFF
J10O DIN = &HOO
D110 CDIR = 8HFF42
02.1O POKE CHORI,SRQ
0210 POKE CDIR,SRQ+WP+RP
0310 POKE CPORT.O
0310 Y = 8H23
0330 GOsue 2000
0330 GOSUR 3000
03.0 FRIQ = 0 
lol}\begin{array}{l}{03:0}\\{\mathrm{ FOH 1 = 1 TO }}\\{03:0 GOSUB 3000}
03/0 FREQ = FRFL! - 10 + y
03R0 NEKT I
```



```
04% POKE CPORT,SRO
ontrol port address
SRQ bit
UP bit
    RPbit
    dav bit
    data port direction register address
    data port lines to output mode
    control port direction register address
    set SRQ high, W', and RP low
    set SRQ.WP, and RP l ines output, DAV input
    set SRQ low (begin command)
    command 2, address 3 (freq data for 271)
    end Y to racio
    read and discerd the "D"
    read g digits of frequency
    set SRQ high (end command)
04.0 X$ = "0" + RIGHTS(SIR$(58100400-FFFQ).8) . calculate up-link frequency
05,0 POKE CPORT.0 Set SRQ low (Degin command)
0510 Y = 8H25 : Command 2, agdress 5 (freq data for 471)
05% GOSUB 2000 - send r to the radio
0530 Y = 8H2D
05:0 GOSUB 2000
05;0 FOR I= 1TLIg , send g digits of frequency
cs/0 60:4/8 2000
Cs;O NEXI I
0530 Y 8+12[
0670 GO:IUB 2000
0610 POKE CFORT.SRQ Set SRO high (end command)
(16:0 STOP
20:0 REM Subroutine A - write the value Y to the radio
2010 REM Subroutine A - Write the valuer to the rad
20:1 POKL DOLK,HOUT
- set data
    set write strobe
2030 POKt CPORTCM
2050 POKE CPORI.O - clear write strobe
2060 If (PEFK(CPORT) AND OAV) =0 THEN GOTO 2060
20%0 REGURN
30n0 REM Subroutine B - read a Dyte from the radio into y
30n0 RIM Subroutine B - read a byte from tne radio 
3010 POKY DDIR,IIN
    set road strote
```



```
3040 Y - PFGKOPORT) AND &HDF : get data (without command nitole)
30:SO POKL CPORT.O Clear read strobe
\010 II (PIG(rPORT) AND DAV) = O IHIN (6Ot0 3060
*O% RfllliN
```

fig. 2. BASIC program controls ICOM 271 and 471 for use with OSCAR 10.
reads the 2-meter downlink receive frequency, then calculates and sets the $70-\mathrm{cm}$ uplink transmit frequency. In this simple example, doppler can be accounted for by using the RIT on the 271. A more elaborate program would include automatic doppler correction computed from Keplerian orbital elements.

Since most personal computers use BASIC, the example is written in "generic BASIC." It is, however, virtually guaranteed not to run on your "AcceleratronJ4Q" computer without some massaging, particularly with respect to I/O port assignments. It should be fairly simple, however, to translate it verbatim to your favorite microprocessor. The example uses a memorymapped 6522 VIA chip to exchange information with the radio. $1 / \mathrm{O}$ addresses and constants are defined in lines 10 through 110; control lines are initialized in lines 200 and 210. Lines 300 through $\mathbf{4 0 0}$ read the downlink frequency, line 450 calculates the uplink frequency, and lines 500 through 610 set the new uplink frequency. The subroutines at lines 2000 through 2070 and 3000 through 3070 correspond to Procedures A and B, respectively.

extending ICOM computer control

ICOM provides a very powerful, but incomplete command set for controlling the radios. Unfortunately, the radios lack direct commands to:

- Control the DUPLEX direction or turn DUPLEX on/off.
- Switch between VFOs or read the current VFO/Memory number.
- Turn SPLIT on/off (for repeaters or HF split operations).
- Control PL frequency or turn PL on/off.
- Control filters (other than CW/RTTY-Narrow).
- Switch between HAM and GEN mode on the 751.
- Control RIT/XIT.
- Control volume, squelch, tone, RF gain, power, or noise blanker.
First, the good news: combinations of the six standard commands can be used to achieve many of the above functions. In what follows, I'll discuss several interesting functions that can be performed. Many others are possible.

Now, the bad news: what I'm about to describe is not for the meek or timid. We're talking major brain surgery - i.e., changing the contents of your radio's RAM. There are downside risks. Even thinking about changing the contents of this memory probably voids your radio's warranty 87 different ways. Furthermore, what I'm about to describe may not even work on your radio. There's no guarantee that the memory map i.e., the addresses and values - for my radios is the same as the memory map for yours. Nor is there any guarantee that the memory map will stay the same in future ICOM products (or even later models of the same product). Also, a slip of the scalpel, so to speak, can leave your radio lobotimized, and in need of a brain transplant (or at least a fresh memory, available from ICOM for \$25). Proceed at your own risk!

Before venturing further, we must delve a bit deeper into the computer architecture of the radios. From a computer standpoint, the radios look like your gardenvariety, vanilla-flavored microcomputer. They have CPU, a memory, display, and an 8×10 keyboard. The R-71, 751, 271, and 471 - and most likely the 1271 - use the same computer architecture. In fact, they all use the same CPU chip and ROM program. The program supports all the features of all the radios. The "personality" of each radio is determined by a small 2×2-inch ($5.08 \times 5.08 \mathrm{~cm}$), removable board containing a CMOS RAM. This RAM contains the radio's bands and band limits, the current VFO and memory channel, and the number of memories available, as well as the frequency, mode, band, duplex offset, duplex direction, and PL frequency for each VFO and memory. Changes to the contents of this RAM can result in drastic behavioral changes in the radio. All
sorts of wonderful, unintended functions can be performed, such as switching between HAM/GEN modes and extending the frequency coverage.
The R-71, 751, 271, and 471 each have 32 memories for saving user information. The RAM to be changed is mapped into frequency and mode information for memories 33 to 255 . These locations are inaccessible to the casual user operating the radio from the front panel controls. However, the memories are accessible via the computer interface.

switching bands

Each radio can cover one or more bands. The bands are expressed as upper/lower frequency bounds as in the Band Data command. The 751 has ten bands:

0	$30.0-0.1 \mathrm{MHz}$
1	$2.0-1.8$
2	$4.1-3.45$
3	$7.5-6.95$
4	$10.5-9.95$
5	$14.5-13.95$
6	$18.5-17.95$
7	$21.5-20.95$
8	$25.1-24.45$
9	$30.0-27.95$

On the 751, band 0 is the General Coverage mode, while bands 1 through 9 are Ham mode. The 271 has two bands:

$$
\begin{array}{ll}
0 & 150.0-140.0 \mathrm{MHz} \\
1 & 148.2-143.8
\end{array}
$$

The CPU stores a single-digit band index, along with the frequency for each memory and VFO. The hun-dreds-of-kHz frequency digit at memory channel 38 is also the band of channel 38 . To switch bands, first issue a Set Memory/VFO command with hex 26 as the operand. Next issue a Frequency Data command to write a frequency with the appropriate band index in the hundreds-of-kHz digit followed by a Memory Write command. The frequency that you use must be within the band limits of the radio. Also, be very careful in selecting the band index, as an invalid band will result in an upper/lower frequency pair of 0.00 through 0.00 Hz , not a very useful pair! Finally, issue a Set Memory/VFO command with 00 as the operand to return the radio to the current VFO followed by a Memory Read command. The bands of Memory channels 1 through 32 can also be changed through memory manipulation, but, in general, it's easier to change the band of a VFO and then store the VFO in a memory than it is to change the band of a memory directly.

greater frequency coverage

The frequency coverage of several of the radios can be extended beyond the band limits. For example, many 751s can be tuned below 100 kHz and above

A monthly of 100 -plus pages-has everything you need to know about where to find equipment, how to install it, system performance, legal viewpoints, and industry insights! With your subscription to STV ${ }^{\text {² }}$ you will receive a FREE LCD Calendar/Clock.

- Only \$19.95 per year (12 monthly issues)
- \$1.00 for sample copy

The best in satellite programming! Featuring: \star All Scheduled Channels \star Weekly Updated Listings \star Magazine Format \star Complete Movie Listing \star All Sports Specials \star Prime Time Highlights \star Specials Listing and \star Programming Updates!

- Only \$45.00 per year (52 weekly issues)
- 2 Years $\$ 79.00$ (104 weekly issues)
- \$1.00 for sample copy

Visa ${ }^{6}$ and MasterCard ${ }^{\text {® }}$ accepted (subscription orders only). All prices in US funds. Write for foreign rates.

Send this ad along with your order to:

STV ${ }^{\star} /$ OnSat ${ }^{\oplus}$

P.O. Box 2384-Dept. HR • Shelby, NC 28151-2384 SUBSCRIPTION CALLS ONLY TOLL FREE 1-800-438-2020

30.0 MHz . The additional frequency coverage appears to be both model- and radio- dependent. It is sometimes even mode-dependent.
All frequencies entered via the dial, the keypad, or the computer interface are checked to ensure that they are within the band limits. Frequencies outside the band limits are rejected. However, there are several ways to evade this check. The simplest is to find a frequency in memories 33 through 255 and transfer it to the current VFO. The radio does no checking on memory/VFO transfers. Frequencies both above and below the band limits can be obtained. Frequencies above the band limits can also be generated by using the hex digits " A, " " B, " " C, " and " F " in certain digit positions in the Frequency Data command. Use of these digits generates a carry in the next higher digit.

In general, whenever you are outside the radio's band limits, you may tune only towards the band limits. For example, if you are above the band limits, you may tune only lower in frequency. If below, you may tune only higher in frequency. Attempts to tune in the opposite direction will place you at the opposite band limit.

conclusion

ICOM has incorporated computer control into its radios, and its current product line continues that innovative trend. With minimal hardware, any microcomputer can be used to control the radios. The standard command set is simple, easy to use, and sufficient for most applications. Many functions not provided for by the standard command set can be realized by combinations of commands. Although it's not discussed here, it's also a simple task to intercept the radio's keyboard matrix and simulate button pushes with a computer. There's no question that computer-controlled radios can take the drudgery out of, and put the fun back into, Amateur Radio operation.
ham radio

NEW BOOKS

AMATEUR RADIO SOFTWARE

by John Morris, GM4ANB
Brand new from RSGB, this computer source book is chock full of computer programs, hints, tips and handy ideas for computer owners and users. Nearly 100 programs include contest logging routines. EME. construction, Morse training, and Packet Radio to name just a few. Morris' approach to writing this book was twofold. One was to give the computer user programs that had been de-bugged and were ready to type in and run. The second was as a source book for programming ideas and expansion. Most programs are written in BASIC so at least a fundamental knowledge of simple programming will be helpful to get maximum use from this book. (c) 1985328 pages 1st edition RS-ARS

Hardbound \$14.95

ARRL COMPUTER NETWORKING CONFERENCES 1-4
Pioneer Papers on Packet Radio 1981-1985
This collection of Packet Radio papers should be in every Packet enthusiasts shack! Written during the formulative years of Packet development. these papers (too numerous to mention them ali) cover theory. practical applications, protocols, software and hardware subjects You also get a complete up-to-date colfection of all published "Gateway". the ARRL Packet Radio newsletter. As big as the ARRL HANDBOOK, this new book is sure to be the ARRL's next best seller! a 1985 over 1000 pages.
AR-CNC
Softbound \$17.95

Please enclose $\$ 3.50$ shipping and handling

HAM RADIO'S BOOKSTORE
Greenville, NH 03048

Kantronics UTU-XT

NOW - for ANY computer, the intelligent terminal unit that can change its spots.

Can you imagine a terminal unit (TU) that has user programmable parameters? Would you like to be able to vary the MARK and SPACE tones you use by computer control, save these parameters for next time, and be able to change the center frequency and bandwidth of the CW detector? All this can be done with the Universal Terminal Unit-XT by Kantronics.

Imagine a CW/RTTY/ASCII/AMTOR machine that operates with a TNC-like command structure, including 54 commands. The UTU-XT does just that with a 6303 microcomputer, 2 K of RAM, NOVRAM, and 128 K of EPROM embedded inside.

UTU-XT is also compatible to any computer with an RS232 or TTL (C-64) serial port - the circuit is built in. This allows you the flexibility to change computers at any time.

UTU-XT operates CW from 6-99 WPM, RTTY from 45 to 300 baud. ASCII from 110 to 300 baud, and AMTOR modes A, B, and L. Selective RTTY and SELFEC are included.
Suggested retail \$359.95
区eKantronics

Typical rejection: $\pm 600 \mathrm{Khz} @ 144 \mathrm{Mhz}:-28 \mathrm{~dB}$ $\pm 1.6 \mathrm{Mhz} @ 220 \mathrm{Mhz}:-40 \mathrm{~dB}$ ± 5 Mhz@450 Mhz: -50 dB

- 40 to 1000 Mhz - funed to your frequency
- 5 large helical resonators
- Low noise - High overload resistance - 8 dB gain - ultimate rejection> 80 dB - 10 to 15 volts DC operation
- Size - $1.6 \times 2.6 \times 4.75^{\prime \prime}$ exc. connectors
- FANTASTIC REJECTION!

Price - CALL bipolar w/RCA jacks Connector options: BCN \$5, UHF \$6,

N $\$ 10$
SUPER HOT! GaAs Fet option \$20

AUTOMATIC IDENTIFIERS

ID-1

- For transceivers and repeaters - AMATEUR and COMMERCIAL Automatic operation - adjustable speed and amplitude
Small size - easy installation - 7 to 15 voilts DC
- 8 seiectable, reprogrammable messages each up to 2 min long
-Wired, tested, and programmed with your message(s) Model ID-1 - \$49.95 Model ID-2 w/2 to 10 minute timer - $\$ 69.95$ We offer a complete line of transmitter and receiver strips Request and synthesizers for amateut and commercial use.
Request our free catalog
Allow $\$ 2$ for UPS shipping - Mastercard and VISA welcome

BUT, TIPTIN
For more than 40 years we have been serving the amateur community with QUALITY PRODUCTS and DEPENDABLE "S-E-R-V-I-C-E" and, we fully intend to carry on this proud tradition with even MORE new product lines plus the same "fair" Ireatment you've come to rely on. Our reconditioned equipment is of the finest quality with 30,60 and even 90 -day parts and labor warranties on selected pieces
And, remember

- WE SERVICE WHAT WE SELL -

AEA	DRAKE	MOSELEY
AMECO	ENCOMM	NYE
AMERITRON	HUSTLER	PALOMAR
ANTEK	ICOM	RADIO CALLBOOK
ARRL	JANEL	ROBOT
ASTRON	KANTRONICS	ROHN
ANTENNA	KDK	TELEX / HYGAIN
SPECIALISTS	KLM	TEN-TEC
B \& W	LARSEN	TRIO-KENWOOD
BENCHER	MFJ	UNADILLA / REYCO
BUTTERNUT	MINI-PRODUCTS	YAESU
CUSHCRAFT	MIRAGE	
DIAWA		

Write today for our latest
Bulletin/Used Equipment List.

P.O. Box 73

208 East Kemp Watertown, SD 57201

'AMERICA'S MOST RELIABLE AMATEUR RADIO DEALER'" SELL-TRADE

New \& Reconditioned Ham Equipment

Call or Write Us Today For a Quote! You'll Find Us to be Courteous, Knowledgeable and Honest

AEA AMT-1. REGULARLY $\$ 479.95$ NOW ONLY \$299.95

THE AMTOR TERMINAL UNIT!!! Works with any ASCII terminal or personal computer with a terminal program. Also works RTTY, CW, ASCII.
ORDER YOURS TODAY!Limitedquantities.

Your Authorized Distributor For

INTRODUCTORY SALE!

Belden No.

Nomal
No.
8214 1102B RG8 /U Foam 96%
8237 1100B RG8/U Poly 96%
$\begin{array}{lll}8241 & \text { 1500B } & \text { RG59/U Poly } 96 \% \\ 8267 & 1130 B & \text { RG213/U Poly } 96 \%\end{array}$
$\begin{array}{lll}8267 & \text { 1.130B } & \text { RG213/U Poly } 96 \% \\ 9269 & 1600 B & \text { RG62A/U Poly } 96 \%\end{array}$
8216 1450B RG174/U Poly 96\%
$9913 \quad 1180$ Low Loss 50 Ohm
LOWLOSS 50 Ohm
Nema
No.
1110
1130
1140
1705
1310
1470
8C1822
8C1620
FXA12
FLC12
NE720
PL259
PL259 Standard Plug for RG8

Per $\mathbf{1 0 0} \mathbf{f t}$ $\$ 45.00$	Per $\mathbf{f t}$.
39.00	.44
13.00	.15
53.00	.59
15.00	.17
12.00	.14
46.00	.58

RG8X 95% Shield (mini 8) RG213/U Mil Spec. 96% Shield
 RG214/U Mil Spec. - Silver

RG1428/U Teflon-Silver
RG217/U5/8"50 Ohm Dbl. Shid.
RG223/U Mil Spec. - Silver
ROTOR CABLE - 8 COND. 2-18 Ga., $6-22 \mathrm{Ga}$.

2.16	Ga., 6-20 Ga. Heavy Duty	39.00	.21

HARDLINE-1/2"
Per Per
15.00
$\begin{array}{ll}\text { PL259AM Amphenol PL259 } \\ \text { PL259TS } & \text { PL259Teflon/Silv }\end{array}$
UG21D Type N for RG8, 213, 21
UG175 Adapter for RG58
Call or write for complete Price List Shipping: Cable $-\$ 3.00$ per 100 ft .

COD add 52.00 . Florida Residents add 5%.

published by Bill Orr, W6SAI and Stu Cowan, W2LX BEAM ANTENNA HANDBOOK
Completely revised and updated with the latest computer generated information on BEAM Antenna design. Covers HF and VHF Yagis and 10, 18 and 24 MHz WARC bands. Everything you need to know. 204 illustrations. 268 pages 1985. Revised 1st edition.

$$
\text { RP-BA } \quad \text { Softbound } \$ 9.95
$$

SIMPLE LOW-COST WIRE ANTENNAS

Primer on how-to-build simple low cost wire antennas Includes invisible designs for apartment dwellers. Full of diagrams and schematics 192 pages. 1972 2nd edition
1)RP-WA

Softbound $\$ 7.95$
ALL ABOUT CUBICAL QUAD ANTENNAS
Simple to build, lightweight, and high performance make the Ouad at DX'ers delight. Everything from the single element to a multi-element monster. A wealth of information on construction, teedring, tuning and installing the quad antenna. 112 pages. ©1982. 3rd edition
IRP-CQ
Softbound $\$ 6.95$

THE RADIO AMATEUR ANTENNA HANDBOOK

A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yagi-Quad controversy, baluns, slopers, and delta loops. Practical antenna projects that work! 190 pages. ©1978. 1st edition. IRP-AH no charge with orders of $\$ 50$ or more or at a cost of $\$ 4.00$ individually.

Kantronics KPC-2

NOW - AX. 25 VERSION 2

 for ANY computer, the Packet Communicator IICan you imagine a TNC that has a built-in HF modem and tuning aid, AX. 25 version 2 protocol, multiple connects, and both TTL/RS-232 levels at the computer port? Well, it's here! Introducing the Kantronics Packet Communicator II, KPC-2 for short.

KPC-2 is the only TNC you will need, even if you change computers. KPC-2 interfaces with ANY computer that has a serial RS-232 or TTL (C-64/VIC-20) port. The generic command structure, similar to KPC-1 but enhanced, fits any computer, even the PC compatibles.

In addition, KPC-2 features totally new hardware and software - KPC-2 is

not a clone. And, of course, KPC-2 is enclosed in the now industry standard Kantronics extruded aluminum case. For more information contact Kantronics or a Kantronics dealer.

Want more information on Packet? Contact us about our new PACKET VIDEO, great for a club program or instruction. \$22.50, VHS or BETA format.

-KKantronics
1202E. 23rdstreet 19131842.7745
Lawrence, Kansas 66046

ALL OUR PRODUCIS MADE IN USA

Barker \& Williamson offers six new multiband trapped dipoles made to fit in less space than conventional antennas You may not have room for that dream antenna farm. but no longer need limit your operating to one or two bands. These new antennas provide low SWR on every band making a great companion for todays solid state rigs

- Direct feed with 52 OHM Coax - 1 KW CW, 2 KW PE.P. SSB
- SO-239 Termination

MODEL	BANDS	LENGTH	PRICE
AS -100	$160,80,40,20$ METERS	137 Ft	$\$ 12900$
AXS -100	100,30 METERS	90 Ft	9900
AS -80	$80,40,20$ METERS	78 Ft	99.00
AXS - 80	$80,40,15$ METERS	64 Ft	99.00
AS -40	$40,20,15,10 \mathrm{METERS}$	40 Ft	129.00
AS -20	$20,15,10$ METERS	23 Ft	99,00

Food for thought.

Our new Universal Tone Encoder lends its versatility to all tastes. The menu includes all CTCSS, as well as Burst Tones, Touch Tones, and Test Tones. No counter or test equipment required to set frequencyjust dial it in. While traveling, use it on your Amateur transceiver to access tone operated systems, or in your service van to check out your customers repeaters; also, as a piece of test equipment to modulate your Service Monitor or signal generator. It can even operate off an internal nine volt battery, and is available for one day delivery, backed by our one year warranty.

- All tones in Group A and Group B are included.
- Output level flat to within 1.5 db over entire range selected.
- Separate level adjust pots and output connections for each tone Group.
- Immune to RF
- Powered by $6-30 \mathrm{vdc}$, unregulated at 8 ma .
- Low impedance, low distortion, adjustable sinewave output, 5 v peak-to-peak
- Instant start-up.
- Off position for no tone output.
- Reverse polarity protection built-in.

Group A

67.0 XZ	91.5 ZZ	118.82 B	156.75 A
71.9 XA	94.8 ZA	123.032	162.25 B
74.4 WA	97.4 ZB	127.33 A	167.96 Z
77.0 XB	100.01 Z	131.83 B	173.86 A
79.7 SP	103.51 A	136.54 Z	179.96 B
82.5 YZ	107.21 B	141.34 A	186.27 Z
85.4 YA	110.92 Z	146.24 B	192.87 A
88.5 YB	114.82 A	151.45 Z	203.5 M 1

- Frequency accuracy, $\pm .1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Frequencies to 250 Hz available on special order
- Continuous tone

Group B

TEST-TONES:	TOUCH-TONES:	BURST TONES:				
600	697	1209	1600	1850	2150	2400
1000	770	1336	1650	1900	2200	2450
1500	852	1477	1700	1950	2250	2500
2175	941	1633	1750	2000	2300	2550
2805			1800	2100	2350	

- Frequency accuracy, $\pm 1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Tone length approximately 300 ms . May be lengthened, shortened or eliminated by changing value of resistor
Model TE-64 \$79.95

426 West Taft Avenue, Orange, California 92667
(800) 854-0547/California: (714) 998-3021

AC line transient protection

It all started when I destroyed my VCR with a lawnmower. Perhaps I should explain in greater detail. One summer day as I was trimming the weeds in my front lawn, my electric lawnmower blew a motor field rectifier and began to draw considerable current from the AC line. This situation was quickly, but not instantly, corrected by the house circuit breaker, which tripped and broke the circuit, as it's intended to do. Then, however, the electric fields in the motor collapsed, producing a large back EMF on the now-open circuit AC cord. Unfortunately, this cord connected the mower to the same circuit on which my VCR was patiently awaiting the start of a "Sky King" rerun.
The VCR, like a lot of new equipment - including most new Amateur rigs and the computer on which I write - doesn't like to see high voltage spikes coupled into its relatively fragile CMOS logic integrated circuitry. On a computer, line spikes or transients can cause data drop-outs, so-called "soft" errors in the RAM memory, or other grief. In my VCR, the unusually large transient simply fried some component on the microprocessor board. Fortunately, the VCR was still under warranty.
I decided that some transient protection would be necessary. A quick check of the catalogs showed that many manufacturers make line cord sets with transient suppression to reduce the chances of just this sort of occurrence. But these outlet boxes cost at least $\$ 30.00$, so I decided to try to build some lower-cost version of these outlet boxes, using the same type of line transient protection devices. I could then distribute these protective boxes about my house to protect any electronic equipment that would be sensitive to high voltage transient peaks on the AC mains.

In this project, I've taken a low-cost approach to transient protection that uses commonly available metal oxide varistors. The method could easily be adapted to many of the commercially-available outlet boxes or $A C$ junction strips found in most hardware stores. The total cost of each protected outlet box is about $\$ 5.00$.

metal oxide varistors

A metal oxide varistor (MOV) is a voltage-dependent semiconductor device that acts much like a pair of back-to- back zener diodes. The MOV is placed across the $A C$ input of the device to be protected. Under normal conditions, the MOV has a high input impedance so it draws a minimal amount of power. However, if the voltage across the AC line increases to a point above the turn-on voltage of the MOV, it suddenly switches to a low-impedance state. This low impedance is in shunt with the line, so the AC voltage is limited. Once the transient passes - i.e., the AC line voltage returns to normal - the MOV recovers and returns to its high-impedance, stand-by state.

Most of the voltage increases that appear on the AC mains are of momentary duration and are caused by switching large loads, especially inductive loads, on or off, or by lightning strikes (at a distance, not directly on the equipment). This means that even though the transient may be many hundreds or even thousands of volts, since it does not last long (a "typical" transient might last a few tens of microseconds) there is little total energy in the spike, and the energy can be safely dissipated in the MOV.

A typical MOV intended for use on a 120 volt AC line has the specifications shown in table 1. It can take up to 4500 Amperes in a spike with a total energy of 35 Joules, which means that if it is clamping the line at the specified maximum of 225 volts, the transient may last only about 30 microseconds. This explains how a small device, no bigger than a rather large disk capacitor, can tolerate 4500 amperes - it does so only for a few microseconds, and not too often, at that. However, by clamping the line to 225 volts, the MOV can do a great service to us in protecting the seemingly delicate, certainly complex equipment we now find commonplace in our homes, computer rooms and ham shacks.
By Jerry Hinshaw, N6JH, 4558 Margery Drive, Fremont, California 94538

The manufacturers' data sheets provide detailed design information that permits us to calculate the type of MOV needed for any expected transient. However, I found such data to be of little practical use because I can't predict what type of transient one might expect on the AC lines in my typical tract home. Therefore, I merely selected a MOV that had a large current capacity and the lowest available varistor voltage because these factors seemed likely to offer the maximum protection. Furthermore, there was only one type available at the local Radio Shack, which pretty well directed my choice. In general, though, it's best to select a MOV with the lowest turn-on voltage that will still permit normal operation of the equipment you choose to protect. This choice means that a maximum range of clamping is available and that the minimum excess spike is coupled into the equipment. More detailed information is available from the manufacturers.
There are two modes of voltage transient which the suppressor should be able to shunt. In the first, a transient may cause the voltage across the $A C$ lines to rise above the nominal 120 volts rms (1 am speaking about the US standard mains, but these concepts apply to power mains worldwide). In this case, the voltage
between the two lines rises abruptly above the nominal value with respect to a ground reference. This can be called a differential mode transient because there's a difference between the reference point and each of the two lines.

Figure 1A shows this common mode voltage transient schematically, with two hypothetical voltmeters placed across the AC lines. These meters are hypothetical in that they are presumed to have instantaneous response and are depicted at the exact moment a transient has caused the voltage across the hot and neutral lines to soar far beyond the nominal value. However, the neutral-to-ground voltage is not significantly disturbed.

The second type of transient is shown in fig. 1B. Note that the potential across the hot and neutral lines can be normal, or nearly so, while their potential to ground can be very great. This type of "elevation" can be as damaging to electronic circuitry as the differential type of transient. In order to protect equipment from these two distinct modes of transient behavior, we need to have two sets of suppressors. One sup-
table 1. Specifications of a typical MOV designed for 120 VAC use, the General Electric V130LA10A.

Varistor voltage, minimum	185 volts
Varistor voltage, nominal	200 volts
Varistor voltage, maximum	225 volts
Peak current, maximum	4500 amperes
Energy	35 joules

pressor must be placed across the $A C$ line and a second set should be placed from each side of the line to ground fig. 2B. Clearly, if there is no ground line present, as in fig. 2A, only one MOV suppressor is needed for protection, as long as no other path to a safety gound exists.

construction

Now that the MOV has been selected, it must be safely installed across the $A C$ input of the equipment to be protected. One good way to do this is to install it inside the equipment itself. Another way is to somehow place the MOV across the input line between the equipment and the AC outlet. I chose to do the latter because I found a source of low-cost AC outlet boxes that suited my needs.

The AC box I chose is a plastic unit originally designed to expand a US standard two-plug outlet into a six-outlet box. It is easily installed by removing the usual switchplate and plugging the new unit into the wall. A single screw secures the outlet box into the threaded insert that originally held the outlet cover

fig. 2. A simple schematic diagram showing how the MOV is installed to protect equipment from power line transients. (A), placement of the MOV in a two-wire system. (B). Three MOVs are used to fully protect a system which has a third conductor as safety ground.
plate. This type of accessory box seems widely available and has the advantage of providing extra outlets, which are often useful. Furthermore, it has enough room ipside to mount several MOVs easily. You can separate the box into two independently protected circuits, if you desire.

The outlet box I chose was designed to convert two standard three-wire outlets into six three-wire outlets. Made of plastic, it contains two sets of contacts, each set consisting of three conductors, one each for the ground, neutral and hot sides of the AC line. The interior construction of the box is shown in fig. 3. The box protrudes perhaps 1.5 inches out from the wall when it's installed, so there's space inside for installing the MOVs.

The figure also shows one MOV installed across the two main conductors of one set of three outlets. No protection against common mode transients has been installed, so there's no MOV installed between the ground pin and either of the other two pins. This is because in my house, although some of the outlets do have ground pins, there are, in fact, no ground con-

fig. 3. Interior view of the accessory outlet box with one MOV installed across the AC hot and neutral lines. Note the protective sleeving on one of the MOV's leads.

fig. 4. The completed outlet box installed and in use.
nections actually present inside the wall. The original outlets in this house are two-wire outlets, which is typical of most houses built before the 1960s, when local electrical codes gradually began to require the use of three-wire, grounded outlets. Thus, there's only one MOV installed in this box. This MOV is placed across the hot and neutral lines as shown. The metal conductors easily take regular tin-lead soldering, so that it is simple to permanently solder the leads of the MOV across the circuit. Note that one of the leads of the MOV must cross over the other lead's AC connection. At this point it is imperative that you install good insulation. I used two pieces of heat-shrink tubing, one inside the other. Remember, this circuit is not powered by a low-voltage supply like a typical digital breadboard - think "safety" throughout the project! $\sim \sim \rightarrow$

Once the MOV circuitry is installed, replace the back cover of the box. This particular unit is installed after the cover plate of the old outlet has been removed. A long screw secures the box to the wall. The completed unit, ready to install on a wall outlet, is shown in fig. 4. It protrudes a bit from the wall, but where there were two unprotected outlets before, there are now six transient-protected outlets available. The total construction time, if you want to call such a simple procedure by so elaborate a term, is well under an hour.

Now my VCR, my ham shack, and my computer each have their own transient protection box. The laiwnmower has yet to blow another motor rectifier, but I have fair confidence that, should it happen again, the delicate electronics components will be better off than before, when they faced high voltage transients completely unprotected. The cost of a few of these suppressor outlet boxes seems like cheap insurance to me.
ham radio

GLB Electronics - the lirst commercial producer of pacaet controliers gins the TAPA Revolution to bring you the GLB Model TNC2A Kil This kit is the latest TAPR design and is suppled with top products and out technicat statt is available to assist you daily from ith 3 PM Eastern time

GLB ModeI TNC-2A Kit

CIBEECTRONICSINC.
151 Commerce Pkwy, Buffalo, NY 14224
716-675-6740 9 to 4

DO YOU
KNOW
WHERE TO FIND REAL BARGAINS

NUTS A VOLTS
Wincomanterams
ham gear computers software SCANNERS - optics TEST EQUIPMENT microwave SATELLITE AUDIO VISUAL NEW PRODUCTS COMPONENTS - KITS ANTIQUE ELECT. PUBLICATIONS PLANS - SERVICES on NEW and USED ELECTRONIC Equipment?

You'll Find Them in the Nation's No. 1 Electronic Shopper Magazine

NUTS \& VOLTS

Now in Our 5th Year

Nuts \& Volts is published MONTHLY and features: NEW STATE-OF-THE-ART PRODUCTS • SURPLUS EQUIPMENT • USED BARGAINS - LOW COST AD RATES • PRIVATE AND COMMERCIAL CLASSIFIEDS • NATIONAL CIRCULATION • NEW PRODUCT NEWS SECTION • AND A FREE CLASSIFIED AD WITH YOUR SUBSCRIPTION SUBSERIPTIOM RATES
\square One Year - 3rd Class Mail $\$ 10.00$
\square One Year - Ist Class Mail. $\$ 15.00$
\square One Year - Canada \& Mexico (in U.S. Funds)
$\$ 18.00$
\square Lifetime - 3rd Class Mail (U.S. Only)
$\$ 35.00$

order mow!

SEND:	\square CHECK	\square MONEY ORDER
	\square VISA	\square MASTERCARD

TO: NUTS \& VOLTS MAGAZINE
P.O. BOX $\|\| I-H$

PLACENTIA, CALIFORNIA 92670
(714) 632-772I

Name
Address
Gity
State \qquad
Card No.
Exp. Date
IF YOU'RE INTO ELECTRONICS,
THIS MAGAZINE WILL SAVE YOU MONEY!
Dealer Inquiries Invited

1986 CALLBOOKS

The "Flying Horse"

 has a great new look!It's the biggest change in Callbook history! Now there are 3 new Callbooks for 1986.

The North American Callbook lists the amateurs in all countries in North America plus those in Hawail and the U.S. possessions.

The International Callbook lists the calls, names, and address information for licensed arnateurs in all countries outside North America. Coverage includes Europe, Asia, Africa, South America, and the Pacific area (exclusive of Hawail and the U.S. possessions).

The Callbook Supplement is a whole new idea in Callbook updates. Published June 1, 1986, this Supplement will include all the activity for both the North American and International Callbooks for the preceding 6 months.

Publication date for the 1986 Callbooks is December 1, 1985. See your dealer or order now directly from the publisher.

- North American Callbook
incl. shipping within USA
$\$ 25.00$
incl. shipping to foreign countries 27.60
a International Callbook
incl. shipping within USA
incl. shipping to foreign countries
$\$ 24.00$
a Callbook Supplement, published June 1st incl. shipping within USA $\$ 13.00$ incl. shipping to foreign countries $\quad 14.00$

SPECIAL OFFER

- Both N.A. \& International Callbooks incl. shipping within USA $\$ 45.00$ incl. shipping to foreign countries 53.50

```
* * * * * * * * * * * *
```

Illinois residents please add $61 / 4 \%$ sales tax. All payments must be in U.S. funds.

RADIO AMATEUR||bockinc

Dept. F
925 Sherwood Dr., Box 247 Lake Bluff, IL 60044, USA
Tel: (312) 234-6600 vish -x

6 STORE BUYING POWER

(1) ICOM IC-R71A

Superior Grade General Coverage Receiver
SALE! CALL FOR PRICE
(D) ICOM IC-37A

IC-27A ${ }_{(25 \mathrm{~L}, 2 \mathrm{M}, \mathrm{FM})}$
IC-27H ${ }_{(45 \mathrm{~L}, 2 \mathrm{M}, \mathrm{FM})}$
IC-37A ${ }_{(25 \mathrm{~W}, 220 \mathrm{MHz}, \mathrm{Fm})}$
IC-47 A ${ }_{(25 \mathrm{~W}, 70 \mathrm{~cm}, \mathrm{FM})}$
CALL FORLOW, LOW PRICE
CD ICOM IC-735

The Latest in ICOM's Long Line of HF Transceivers
CALL FOR LOW, LOW PRICE

DUAL BANDER

Covers Both 2 Meters \& 70 cm LATEST EDITION

(CD ICOM IC-2KL

LINEAR AMPLIFIER

- Auto Band Switching
- Broadbanded
- HF 500 Watt Linear AT GREAT LOW, LOW PRICES

(C) ICOM

IC-R7000

$25 \mathrm{MHz}-1300 \mathrm{MHz}$
NOW TAKING ORDERS FOR FIRST SHIPMENT

1.2 GHz Transceiver:

The First Full-featured $1240-1300 \mathrm{MHz}$ Transceiver AT GREAT LOW, LOW PRICES

CD ICOM
 HAND-HELDS

IC-3AT
QUALIFIED PERSONNEL FOR IN STORE DEMOS

All Major Brands in Stock Now!

ANAHEIM, CA 92801 2620 W La Palma
(714) 761-3033, (213) 860-2040 Between Disneyland \& Knotts Berry Farm BURLINGAME, CA 94010 999 Howard Ave.
Bob Ferrero W6RJ President
Jim Rafferty N6RJ
VP So. Calit Div Anaheim Mgr

OAKLAND, CA 94606 2210 Livingston St 534-5757: Don. Mgr. N6IPE Hwy 17 to 23rd Ave Exit

SAN DIEGO, CA 92123
5375 Kearny Villa Rd.
(619) 560-4900: Glenn, Mgr. K6NA
619) $560-4900$ Glenn, Mgr. K6NA
Hwy 163 \& Claremont Mesa Bivd.

PHOENIX, AZ 85015 1702 W. Camelback Rd (602) 242-3515: Bob, K7RDH East of Hwy 17
VAN NUYS, CA 91401 6265 Sepulveda Blvd. (818) 988-2212: AI, Mgr. K6YRA San Diego Fwy. at Victory Bivd.

Toll Iree including Alaska \& Hawaii. Phone Hrs: $9: 30$ a.m. to $5: 30 \mathrm{p} . \mathrm{m}$. Pacilic Time. California and Arizona customers call or visit nearest store. California and Arizona residents please add sales tax. Prices. specilications. descriptions subject to change without notice.

Message Master

Real-voice message system

For any repeater or base

Now you can communicate vital information even when the station you are calling is not on the air - with Message Master. Message Master is a solid state voice recording system which can record messages just by listening to you speak, store messages in memory, and deliver messages on demand. If you can't be there to deliver your messages let Message Master deliver them for you - any messages in any language and in your own voice!

Message Master connects easily to any radio system for remote access: repeaters, base stations, even transceivers. It can even be connected to an autopatch device to exchange messages between your radio system and the telephone network.

Message Master is a multi-user system with mailbox style personalized message service for a hundred users. With 8 minutes of message storage it can store hundreds of messages simultaneously making it ideal for large, active repeater groups.

Would you like your callsign identifications, tail messages, and bulletin messages sent in real-voice? Message Master can send them too. Record several identification messages and it will even send a different ID each time. Almost like magic, Message Master knows when to send identifications and tail messages so it needs no special control signals from your base or repeater.

Call or write for further information before you make another wasted call.

Commercial users: Ask for a brochure on the Message Master Electronic Dispatcher with group and all call messaging.

SEE US IN DAYTON
 Booths 106, 107, 108

Serving all your repeater needs

- Mark 4 Repeaters and Repeater Controllers are THE PERFORMANCE LEADERS with real voice, more autodial numbers, more synthesized voice and more features.
- Mark 3 Repeaters offer the winning combination of high performance and high value.
- LR-1 Repeaters boast superb RF circuitry at an economical price.
- MR-4 Receivers with 7 helical resonators are the only receivers to choose in harsh RF environments.
- PA-100 Amplifiers with rugged TMOS power FETs give you a continuous duty high power signal.

COMING SOON: A 4-channel receiver voting system which operates on true signal-to-noise ratio to extend your coverage by linking to remote receivers.

23 Elm Park
Groveland, MA 01834

Six jumpers plus 60 minutes equals:
 - eight additional memories
 - 10-Hz readout
 - scanning
 - full transmit coverage

modifying the Trio-Kenwood TS-930S

Kenwood's TS-930S transceiver includes a number of unadvertised capabilities. This article describes four of them that can be enabled by making just four simple modifications. These modifications require no additional parts except for one solder lug and about 3 feet (0.9 meter) of No. 18 (or smaller) insulated wire. They can be completed within an hour after removing the 930 's covers.

I'Il describe the modifications first, then explain how to install them.

four simple mods

- Mod 1: eight additional memories. Adding one jumper results in each VFO (A and B) having 8 memories, creating a total of 16.
- Mod 2: 10 Hz readout. Ever notice the unused seven-segment LED on the left end of the frequency display? One jumper makes it usable by shifting the frequency display one digit to the left, resulting in 10 Hz resolution of the displayed frequency.
- Mod 3: Scanning. Add one jumper and the 930 will scan through the 8 frequencies stored in either of the VFO A or B memories.
- Mod 4: Full coverage on transmit. Add three jumpers and the 930 is ready to transmit on WARC, MARS, and the remainder of the nonamateur frequencies in the $1.5-30 \mathrm{MHz}$ range.

getting ready

As with all modification articles, please read this article several times before you heat up the soldering iron.

Doing so may well save you headaches later when you apply power to the set.

After disconnecting everything from your 930, remove the top and bottom covers (16 screws) and place the rig top side up, facing you, on a cushioned surface. Each of the modifications requires access to the digital-unit board, which is hidden under the speaker and VOX control assembly, which can be removed by removing the four screws that hold it to the main chassis of the 930 . Lift the assembly upward slightly and disconnect the small 2 -conductor plug (with the red and white wires) from the digital-unit board. Disconnect the speaker leads (remember their polarity) and the other two connectors that plug into the small board directly beneath the VOX controls. Set the assembly aside.

Two of the mods require access to the back of the front panel. This is easily accomplished thanks to the cabinet's sensible design. On each side of the 930 you'll find the front panel mounting brackets. There are two flathead screws and one roundhead screw in each bracket. Refer to fig. 1 for their locations. Move the 930 toward the front of your work table so that a few inches of the rig hangs over the edge. The panel will tilt forward after (1) removal of the two flathead screws from each bracket and (2) careful loosening - not removal - of the roundhead screws. The panel may tilt on its own, so keep one hand on it while you

By Roger J. Hoffman, WB9BXT, 5719 La Vista Drive, Alexandria, Virginia 22310

9 Autry
Irvine, CA 92718
(714) 458-7277

Canadion Distributor
Eastcom Industries, Ltd.
4511 Chesswood Dr.
Downsview, Ontario, Conada M3J 2V6
(416) 638-7995

INSIDE VIEW - RS-12A	ASTRON POWER SUPPLIES - HEAVY DUTY - HIGH QUALITY • RUGGED - RELIABLE - RS and VS SERIES SPECIAL FEATURES PERFORMANCE SPECIFICATIONS - SOLID STATE ELECTRONICALLY REGULATED - INPUT VOLTAGE: 105 - 125 VAC - FOLD-BACK CURRENT LIMITING Protects Power Supply - OUTPUT VOLTAGE: $13.8 \mathrm{VDC} \pm 0.05$ voits from excessive current \& continuous shorted output. (Internally Adjustable: 11-15 VDC) - CROWBAR OVER VOLTAGE PROTECTION on all Models - RIPPLE: Less than 5 mv peak to peak (full load except RS-4A. \& low line) - MAINTAIN REGULATION \& LOW RIPPLE at low line input Voltage. - HEAVY DUTY HEAT SINK - CHASSIS MOUNT FUSE - THREE CONDUCTOR POWER CORD - ONE YEAR WARRANTY • MADE IN U.S.A.			
2****an MODEL RS-50A	MODEL RS-50M		MODEL VS	
RM-A Series atexines MODEL RM-35A	$19^{\prime \prime} \times 51 / 4$ RACK MOUNT POWER SUPPLIES			Shipping Wi. (lbs.) 38 50 38 50
RS-A SERIES MODEL RS-7A	$\left.\begin{array}{lc}\text { MODEL } & \begin{array}{c}\text { Continuous } \\ \text { Duty }\end{array} \\ \text { (Amps) }\end{array}\right]$	ICS (Amps)4771012203550	$\begin{gathered} \text { Size (IN) } \\ H \times W \times D \\ 33 \times 61 / 2 \times 9 \\ 33 \times 61 / 2 \times 9 \\ 4 \times 71 / 2 \times 10^{3 / 4} \\ 4 \times 71 / 2 \times 103 / 4 \\ 41 / 2 \times 8 \times 9 \\ 5 \times 9 \times 101 / 2 \\ 5 \times 11 \times 11 \\ 6 \times 133 / 4 \times 11 \\ \hline \end{gathered}$	Shipping WI (bs) 5 9 10 11 11 13 18 27 46
RS-M SERIES MODEL RS-35M	- Switchable volt and Amp meter	$\begin{gathered} \text { ICS* }^{*} \\ \text { (Amps) } \\ 12 \\ 20 \\ 35 \\ 50 \end{gathered}$	Size (IN) $\mathrm{H} \times \mathrm{W} \times \mathrm{D}$ $41 / 2 \times 8 \times 9$ $5 \times 9 \times 101 / 2$ $5 \times 11 \times 11$ $6 \times 13^{3 / 4} \times 11$	$\begin{gathered} \text { Shipping } \\ \text { Wt (ibs) } \\ 13 \\ 18 \\ 27 \\ 46 \end{gathered}$
VS-M SERIES MODEL VS-20M	- Separate Volt and Amp Meters - Output Voltage adjustable from 2-15 vo - Current limit adjustable from 1.5 amps	Full Load ICS* (Amps) (1)13.8V 20 35 50	$\begin{gathered} \text { Size (IN) } \\ H \times W \times \text { D } \\ 5 \times 9 \times 101 / 2 \\ 5 \times 11 \times 11 \\ 6 \times 13^{3 / 4} \times 11 \end{gathered}$	Shipping Wt (lbs) 20 29 46
RS-S SERIES MODEL RS-12S	- Built in speaker MODEL Continous Duty (Amps) RS.7S 5 RS.10S 7.5 RS-10L(For LTR) 7.5 RS.12S 9 RS-20S 16	$\begin{gathered} \text { ICS* } \\ \text { Amps } \\ 7 \\ 10 \\ 10 \\ 12 \\ 20 \end{gathered}$	Size (IN) $\mathrm{H} \times \mathrm{W} \times \mathrm{D}$ $4 \times 7 \frac{1}{2} \times 10 \%$ $4 \times 7 \frac{1}{2} \times 10 \%$ 4. 9.13 $41 / 2 \times 8 \times 9$ $5 \times 9 \times 101 / 2$	Shipping WI (lbs) 10 12 13 13 18

fig. 1. Front panel mounting bracket screws.

fig 2. Contact for mod 2 is at $12 o^{\prime}$ clock position.

fig. 3. Connections for mods 1, 2, and 3 on digital unit board.
loosen the roundhead screws. Tilt the panel down about 60 degrees and retighten the roundheads. This will help to maintain the tilt of the panel and will prevent straining the multitude of wires connected to it.

mod installations

Mod 1 (8 additional memories) requires a jum-
per from pin 5 , plug 7 on the digital-unit board to ground through a switch. The function switch (VFO A, VFO B, etc.) has an empty contact to ground when it is placed in the VFO B position. Figure 2 shows the location of the switch contact on the back of the switch's circuit board. Check continuity to ground through this contact to verify that you have the right one. Remember to place the switch in the VFO B position for this check. Solder one end of the jumper to this contact. The other end of the jumper needs to be bent into a small hairpin loop and fitted into the empty hole for pin 5, plug 7. (See fig. 3 for the location of plug 7.) My 930 is seldom moved, so I don't worry about the jumper possibly pulling out of the hole. You'll need to experiment a bit with the size and shape of the hairpin to achieve a snug fit.

When finished, power up the 930 and program a few frequencies into the VFO A memories as you normally would. Then select VFO B and program a few more frequencies. Recall the memories, switching between VFO A and B. You'll notice that you now have the capability of 16 memories. If not, go back and check your jumper.

Mod 2 (10-Hz readout) requires installation of a jumper from pin 1, plug 8 on the digital-unit board to ground. (See fig. 3 for the location of plug 8.) I used the hairpin trick again to connect the plug end of the jumper. A solder lug is connected to the other end, which can then be connected to any convenient screw in the chassis. I used one of the speaker/VOX assembly holddown screws. Test the mod by powering up the rig.

Mod 3 (scanning) requires a jumper from pin 3, plug 8 on the digital-unit board to ground through a switch. Use the hairpin method to connect the jumper to the plug. The other end of the jumper connects to the panel light DIM switch, which has an extra contact to ground when it's in the DIM position. (Figure 4A shows the location of this contact, with Figure 4B showing this in greater detail. Again, check continuity to ground with the switch in the DIM position to verify that you have the correct contact. When you've finished this modification, power up again, load up the memories, select VFO A and depress the DIM switch. Notice that the scanning starts with memory channel 1 , scans to 8 , and repeats, stopping on each channel for about 2 seconds. To scan VFO B memory channels, you must first initiate scanning in VFO A and then select VFO B. Scanning will not initiate in VFO B. In addition, only 8 channels can be scanned (that is, either VFO A or VFO B).

Mod 4 (full coverage transmit) requires three jumpers on the digital-unit board. The first one provides transmit coverage for the WARC bands. The other two provide the remaining coverage. If the WARC jumper is not installed, the 930 will still trans-

fig. 4A. Dim switch circuit board.
mit over the entire 1.5 to $30-\mathrm{MHz}$ range with the exception of the $0.5-\mathrm{MHz}$ segments, that contain the WARC bands. If you want only the WARC coverage, install only the first jumper, which goes from pin 12, U23 to ground. (Note: on two of the three 930s I've modified, the WARC jumper had already been installed at the factory). The second jumper goes from pin 9, U11 to pin 12, U21. The third jumper goes from pin 9, U12 to pin 12, U22. A close inspection of fig. 5 will show that each of the connections to the above ICs can be made on unused solder pads on the digital-unit board. I melted a small amount of solder on each of the pads before installing the jumpers. The grounded end of the WARC jumper can be attached to the same solder lug that was used for the $10-\mathrm{Hz}$ mod. You'll find that the optional tuner (AT-930) covers the WARC bands, but not the general-coverage bands.

final steps

Reinstall the speaker/VOX assembly, remembering to reconnect the four cable assemblies that were disconnected earlier. Reattach the front panel, taking care not to pinch any wires. Replace the covers, and enjoy!

conclusion

What's my assessment of the mods? Well, I hardly ever used the eight memories that came with the 930, so I really didn't need eight more, although I do use some of them now for scanning. I use the scanning feature to locate the family net at $14.177 \mathrm{MHz}(\pm)$ by programming from 14.175 .5 to 14.179 .0 in $50-\mathrm{Hz}$ steps and scanning through them while attending to other tasks in the station. I also use it for checking band

fig. 4B. Lower left corner of dim switch circuit board.

fig. 5. Location of connection points for mod 4.
openings by programming frequencies in different bands. One caution: the 930 will scan as long as the DIM switch is depressed. This includes the transmit mode, so be sure to disable the scanning before transmitting! The $10-\mathrm{Hz}$ resolution isn't needed except to program scanning frequencies, so it's really just a novelty. The full transmit coverage is necessary if you want to use the 930 on some of the MARS frequencies, as I do.

Thanks go to DL3AM and KW9G (ex-WA9GMK), who assisted in installing these modifications. Thanks also to Trio-Kenwood for its courteous approval of my request to reproduce portions of the 930 Technical Service manual for this article. Copies are available from TRIO-KENWOOD, 1111 West Walnut Street, Compton, California 90220.
ham radio

"DX-cellence!"

TS-940S

The new TS-940S is a serious radio for the serious operator. Superb interference reduction circuits and high dynamic range receiver combine with superior transmitter design to give you no-nonsense, no compromise performance that gets your signals through! The exclusive multi-function LCD sub display graphically illustrates VBT, SSB slope, and other features.

- 100% duty cycle transmitter. Super efficient cooling system using special air ducting works with the internal heavy-duty power supply to allow continuous transmission at full power output for periods exceeding one hour. - High stability, dual digital VFOs. An optical encoder and the flywheel VFO knob give the TS-940S a positive tuning "feel:"
- Graphic display of operating features.
Exclusive multi-function LCD sub-
display panel shows CW VBT, SSB slope tuning, as well as frequency, time, and AT- 940 antenna tuner status. - Low distortion transmitter. Kenwood's unique transmitter design delivers top "quality Kenwood" sound.
- Keyboard entry frequency selection. Operating frequencies may be directly entered into the TS-940S without using the VFO knob.
- QRM-fighting features.

Remove "rotten QRM" with the SSB slope tuning, CW VBT, notch filter, AF tune, and CW pitch controls.

- Built-in FM, plus SSB, CW, AM, FSK.
- Semi or full break-in (OSK) CW.
- 40 memory channels.

Mode and frequency may be stored in 4 groups of 10 channels each.

- Programmable scanning.
- General coverage receiver. Tunes from 150 kHz to 30 MHz .
- 1 yr. limited warranty. Another Kenwood First! Optional accessories: - AT-940 full range ($160-10 \mathrm{~m}$) automatic antenna tuner • SP-940 external

Interface IF-232C/IF-10B

speaker with audio filtering * YG-455C-1 $(500 \mathrm{~Hz}), ~ Y G-455 \mathrm{CN}-1(250 \mathrm{~Hz})$. YK-88C-1 (500 Hz) CW filters; YK-88A-1 (6 kHz) AM filter - VS-1 voice synthesizer - SO-1 temperature compensated crystal oscillator e MC-42S UP/DOWN hand mic. - MC-60A. MC- 80 , MC-85 deluxe base station mics. - PC-1A phone patch - TL-922A linear amplifier - SM-220 station monitor - BS-8 pan display * SW-200A and SW-2000 SWR and power meters.

Complete service manuals are available for all Itio-Kenwood transceivers and most accessoties.
Specificattons and prices are subject to change without notice or obiggation.

More TS-940S information is available from authorized Kenwood dealers.

KENWOOD

TRIO-KENWOOD COMMUNICATIONS 1111 West Walrut Street
Compton, Californa 90220

THE STANDARDS OF EXCELLENCE SUPERIOR WEAK SIGNAL PERFORMANCE COMMERCIAL MODEM

COMPARE with ANY unit at ANY Price

THE WORLD OF VHF/HF PACKET*, CW, RTTY, ASCII AND NEW DUAL AMTOR** IS AS CLOSE AS YOUR FINGERTIPS WITH THE BRILLIANTLY INNOVATIVE STATE-OF-THE-ART MICRO-COMPUTER CONTROLLED EXL-5000E. SPECIAL SALE $\$ 649$
 With Packet Radio - \$749/\$795

 Everything built in - nothing else to buy!

- AUTOMATIC SEND/RECEIVE-ANY SPEEDANY SHIFT - BUILTIN COMPUTERGRADES 5° MONITOR • EXTERNAL MONITOR JACK - TIMECLOCK ON SCREEN - TIMED TRANSMISSION AND RECEIVING - SELCAL - CRYSTAL CONTROLLED AFSK MODULATOR - PHOTOCOUPLER CW. FSK KEYER - ASCII KEY ARRANGEMENT - 15 CHANNEL BATTERY BACK-UP MEMORY - 1.280 CHARACTER DISPLAY MEMORY - SPLIT SCREEN TYPE-AHEAD BUFFER FUNCTION SCREEN DISPLAY - PARALLEL PRINTER INTERFACE - SPEEDS: CW 5-100 WPM (AUTOTRACK), 12-300 BAUD (ASCII AND BAUDOT); 12-600 BAUD TTL; 100 BAUD ARO/FEC AMTOR - ATC - RUB-OUT FUNCTION - AUTOMATIC CR/LF - WORD MODE - LINE MODE - WORD WRAP AROUND - ECHO - TEXT CURSOR CONTROL - USOS - DIDDLE - TEST MESSAGES (RY AND OBF) - MARK AND BREAK (SPACE AND BREAK) SYSTEM - VARIABLE CW WEIGHTS • AUDIO MONITOR CRICUIT BUILT IN - CW PRACTICE FUNCTION - CW RANDOM GENERATOR • BARGRAPH LED METER FOR TUNING OSCILLOSCOPE OUTPUTS • BUILTIN $100-120 / 220-240 \mathrm{VAC} 50 / 60 \mathrm{HZ}$ AND 13.8 VDC POWER SUPPLIES - AND MUCH, MUCH MORE • SIZE: $14 \mathrm{~W} \times 14 \mathrm{D} \times$ $5 \mathrm{H} \cdot 1$ YEAR LIMITED WARRANTY -

©-777 THE MOST ADVANCED COMPUTER INTERFACE EVER DESIGNED FOR COMMERCIAL AND AMATEUR USE.

RTTY. BIT INVERSION (RTTY), ASCII, AMTOR (MODE A (ARO)], MODE B IFEC AND SEL-FEC). MODE LI. CW. ANY SPEED ANY SHIFT (ASCII AND BAUDOT)*

SPECIAL SALE \$249

- AUTO DECODING: Automatically decodes signal and displays mode, speed and polarity on the CRT - COMPARE!
- 28 BAR-LED'S and LED'S plus a Bar-Graph Tuning Indicator indicate function, mode, and status - COMPARE!
- The awesome power of the $\Theta-777$ is limited only by the imagination of the user and the terminal program of the computer.
- Use with Any computer that has RS232 or TTL I/O. IBM, Apple, Commodore. TRS80, etc.

Everything Built In - Including Software - Nothing Else To Buy!

- SPEEDS: CW 5-100 WPM (AUTOTRACK), 12-200 BAUD (ASCII AND BAUDOT); 12-600 BAUD TTL. ANO RS232 OR TLL LEVEL DATA CONNECTION - $100-2400$ BAUD (ASCII) OR $45.5-200$ BAUD (BAUDOT) - SELCAL - MEMORY: 15 CHANNELS 768 CHARACTER INPUT BUFFER • AUTO PTI - CW ID - DIDDLE - USOS • ECHO • AUTO CR/LL • ATC • RUB-OUT - CW PRACTICE GENERATOR - VARIABLE CW WEIGHTS - TEST MESSAGE (RY AND OBF) - FULL CRT FUNCTION DISPLAY - MARK - AND - BREAK (SPACE - AND - BREAK) SYSTEM - XTAL AFSK - AUDIO MONITOR - OSCILLOSCOPE OUTPUTS - AND MUCH, MUCH MORE • POWER SUPPLY REQUIREMENTS. 13.8 V DC. 700 MA - SIZE $9 \mathrm{~W} \times 100 \times 2 / \mathrm{H} \cdot 1$ YEAR LIMITED WARRANTY -

EXCLUSIVE DISTRIBUTOR: DEALER INQUIRIES INVITED FOR YOUR NEAREST DEALER OR TO ORDER
AMATEUR-WHOLESALE ELECTRONICS TOLL FREE...800-327-3102
8817 S.W. 129th Terrace. Miami, Florida 33176 Telephone (305) 233-3631 Telex: 80-3356

MANUFACTURER:

TONO CORPORATION
98 Motosoja Machi, Maebashi-Shi, 371, Japan

*PLEASE CALL FOR DETAILS

**Dual Amtor: Commercial quality, the EXL-5000E incorporates two completely separate modems to fully support the amateur Amtor codes and all of the CCIR recommendations $476-2$ for commercial requirements.

ATTENTION Electronic Enthusiasts.

Digital Multimeter

31/2 digit shock mounted display Four DCV ranges. Four DCA ranges. Two ACV ranges, Four ohm ranges. Input impedance 4 Mohm 472-057
$\$ 2995$

12 Inch Monitor

This green screen monitor is compatible with NCR and IBM PCs. Will not accept composite video. *83-770
$\$ 19^{95}$

Heatsinks

We carry heat sinks for TO-3 TO-5, TO-220, transistors. Perfeci for kit building As low as 20°

Joystick for Atari and Commodore
Comfortable pistol grip type. We also have joysticks for Apple, IBM and others. $183-765$

S1995

Pyle Woofer
Superior quality Pyle drivers are available from us at fantastic prices. Build your own speaker system and save. $10^{\prime \prime}, 16$ ounce magnet, 75 watts.
${ }_{4}$ magnet,
When you buy a pair $\$ 23^{80}$

Breadboard Module
Superior quality acetal plastic,
Holds form and resists heat up to
$90^{\circ} \mathrm{C} .630$ tie points, 200 dist.
points.
$\mathbf{k 2 - 3 3 7}$

Solenoids

Perfect for robotics applications Round or square mounting 12VDC. Powertul *28-890 $\mathbf{* 2 8 - 8 9 0}$

$\mathbf{* 2 8 - 8 9 5}$
$\$ 180$

Robotics Motors

We carry many motors to use when designing or kit building As low as

5150

CALL TOLL FREE 1-800-551-1522

resistors, capacitors, transistors speakers, transformers, switches, tubes, ICs, test equipment, kits, fuses, connectors, wire and more. For further information about these products and other exciting values, get a copy of our new 64 page catalog.

MICROCOMPUTER REPEATER CONTROL

\$129

106
Introducing the MICAO REPEATEA CONTROLLER RPT-2A, a new concept in LOW COST, EASY TO INTERFACE, microcomputer repeater control. Replace ofd logic boards with a state of the ar
microcomputer that adds NEW FEATURES. HIGH RELIABILIIY, LOW POWER, SMALL SLZE, and FULL DOCUMENTATION to your system. Direct interface (drop in) with most repeaters. Detailed inlertace information included Onginal MICRO REPEATER CONTROL article featured in QST Dec 1983

- Iwo CW ID Mestages - Heconfluirater COR mput - Irree Out laner - Hagh Curnent PII Intestaca - Prestrneour Warrung MSG: Sine Wave Ione Generator - Courtensoul CW MSG - Courlesy Beep - Iow Power 915 VDC \& 200 ma
- All Conoortios Includer

RPT-2A Kit Only \$129
plus $\$ 300$ shipping
PROCESSOR CONCEPTS
P.O BOX 32908

MINNEAPOLIS, MN 55432
(612) 780-0472 7pm-10pm evenings

CAIL OR WRIIE FOR FRFE CAIALOG AND SPECIFICAIIONS

THE CHAMP

BIRD MODEL 4304
NO ELEMENTS 25-1000 MHZ RF SAMPLING PORT
authorzed ㄱinill oistributos

WEBSTER COMMUNICATIONS INC. 15 BELLARMINE
ROCHESTER, MI 48063 313-375-0420
CALL TOLL FREE
800-521-2333
800-482-3610

Inter-Ear-Communication-System

A space age system that allows you to send and receive your message through your ear and leave

- Replace your HT's awkward speaker-microphone with an n-earmicrophone.
- Discrete HT communications leaves you with both hands free.
- Allows voice communications in noisy environments.
- Our reartalk interfaces with almost all HT's, which have external speaker microphone output jacks.
- Custom hybrid circuit.
- Low power consumption. Transmits at 5 mA and less than 10uA when receiving.
- One year warranty.

Dealer inquiries are invited.
$\$ 99.95$ includes IECS-200 control unit, Ear transducer, 9 V battery, 6-pin output connector and Instruction sheet. (Add 6\% sales tax for California residents.)
Custom made interface cable for TEMPO . 15 . a all ICOM HTs are available at $\$ 19.95$
FOR ALL PREPAID ORDERS, SHIPPING AND HANDLING
CHARGE WILL BE PAID BY N-EAR-TALK.

15 communications, inc.
 22511 Aspan Street • Lake Forest - Calif. 92630-6321 (714) 581-4900 Telex 29-7385 ACE UR Fax (714) 768-4410

EXMET, your source for METALLURGICAL ASSIS TANCE and DISCOUNTED PRICING on Aluminum Tubing and Shapes, plus Carbon, Alloy, SS, and Garvanized Tubing. Examples below are only a small fraction of our stock. Please call or write for additional stock sizes

Aluminum Tubing (Alloy 6061-T6)

O.D. \times Wall	Length	Price per Length
$1 / 2^{\prime \prime} \times .058^{\prime \prime}$	12 ft.	$\$ 10.26$
$7 / 8^{\prime \prime} \times .058^{\prime \prime}$	12 ft	18.40
$1^{\prime \prime} \times .058^{\prime \prime}$	12 ft	21.82
$1-1 / 4^{\prime \prime} \times .058^{\prime \prime}$	12 ft	27.35
$1-1 / 2^{\prime \prime} \times .058^{\prime \prime}$	12 ft	33.37
$1-1 / 2^{\prime \prime} \times .125^{\prime \prime}$	24 ft	76.20
$2^{\prime \prime} \times .058^{\prime \prime}$	12 ft	44.93
$2^{\prime \prime} \times .250^{\prime \prime}$	12 ft	193.92
$3^{\prime \prime} \times .065^{\prime \prime}$	12 ft.	76.14

Stainless Steel, Carbon Steel, Alloyed Steel, and Galvanized Steel Tubing in stock that meets ASTM Standards.
Policies: All prices FOB Twinsburg. Ohio. Payment by MC or Visa, check or money order or COD Minimum order $\$ 50.00$. Volume and Club discounts available. Ohio residents add $51 / 2 \%$ Sales Tax

EXMET, INC.
2170 E. Aurora Rd., P.O. Box 117 Twinsburg, Ohio 44087 - 216-425-8455

See You At Dayton! v 150

DRAKE R-4/T-4X OWNERS AVOID OBSOLESCENCE

PLUG-IN SOLID STATE TUBES!
Get state-of-the-art performance. Most types available
INSTALL KITS TO UPGRADE PERFORMANCE!

- BASIC Improvement
- Audio Bandpass Filter
- Audio IC Amplifier

TUBES \$23 PPD KITS \$25 PPD
overseas air \$7
SARTORI ASSOCIATES, W5DA BOX 832085
RICHARDSON, TX 75083 マ 152 214-494-3093

AUTHORIZED KENWOOD I-COM RADIO DEALER

H L. HEASTER. INC. 203 Buckhannon Pike, Clarksburg, W Va 26301 Clarksburg Phone (304) 624.5485 or W Va TollFree 1-800-352-3177
HAROLD HEASTER, KABOHX, 91 Ridgefield Place, Ormond Beach. FI 32074 Flonda Phone (904) 673-4066
NEW NATION-WIDE TOLL-FREE TELEPHONE 1-800-84-RADIO 1-800-84-72346
Call us for a quotation, WE WILL SAVE YOU MONEY

keep it cool . . . and you'll keep it long

"Keep cool" - good advice for people on a hot day, and good advice for electronic equipment anytime. Heat is the number-one assassin of electronic equipment.

Many device ratings are based on maintaining certain operating temperatures. One manufacturer of a "hobbyist grade" audio power transistor, for example, offers (and advertises prominently) a transistor with a seemingly tremendous collector power dissipation. But there's a catch: the power is available only at room temperature (77-86 degrees F, or 25-30 degrees C). At temperatures above 30 degrees Celsius, the transistor must be derated substantially. No matter where the transistor is used, if it's inside a cabinet or box the temperature will almost certainly exceed 30 degrees C !

Similarly, RF power transistors in transmitters die as often from overheating as from that elusive gremlin, VSWR, but the problem is less well recognized. I know one ham who lost the power transistors in his trunkmounted 100-watt 2-meter power amplifier several times before he realized that the heat was the culprit! During the summer months, the trunk of a car will sizzle even though the airconditioned passenger cabin cools off within a few minutes. Moving the amplifier to behind the dashboard cured the problem.

Reliability experts measure equipment performance in terms of "Mean Time Between Failure" (MTBF), which is usually expressed in hours. For
example, an MTBF of 1000 hours implies that, for a large number of samples of the equipment, an average of one soul-destroying failure per thousand hours of operation will occur. One source claims that a 10 -degree C rise in operating temperature will cut the MTBF almost in half.

Just how important is cooling in electronic equipment? Let's consider some examples. About ten years ago

fig. 1. (A) Typical low-signal (low-heat transistor) does not use a heatsink. (B) Top-hat finned heatsink helps power transistors run cooler.

I worked in a university hospital, repairing patient-monitoring equipment. The EKG oscilloscopes at the nurses' central station were a reliability nightmare. About once a week, usually at 3 AM, the staff would call me to come repair one of the four 'scopes. Yet the same model 'scopes operated reliably at the patients' bedsides. The problem was overheating of the central station 'scopes, which were mounted inside a completely closed desk/console. After ten 1 -inch ventilation holes were cut and a pair of 100-CFM "whisper
fans' were installed, central station 'scopes became as reliable as the bedside 'scopes.

A second example is a story of tragedy prevented. My first personal computer was a Digital Group, Inc., Z80based machine with 26K (2102 chips) of static memory. In those days, my kilobuck bought (in kit form) a motherboard, three 8 K memory boards, a CPU board, a 64-line TV/cassette interface board (with some static memory chips on-board), and several input/output boards. All of those boards contained lots of TTL devices, and they generated a large amount of heat. The builder had to supply the cabinet, a ± 12 VDC, 1-ampere dualpolarity power supply, and a +5 volt DC, 10 -ampere regulated power supply. Since I operated the computer next to a ham rig, EMI both to and from the computer was an issue, so I had to use a well-shielded aluminum cabinet-and shielding isn't always compatible with heat dissipation.

At first all those cards and the two DC power supplies were buttoned up inside the almost unvented aluminum cabinet. Needless to say, the temperature of the cabinet rose to egg-frying levels, and the HEP S-7000 power transistor used as the series-pass element in the voltage regulator operated hot enough to take off skin when touched. I knew that computer would be a reliability headache if the heat were not removed, so I installed a pair of 40-50 CFM fans: a 3.5 -inch (8.89 cm) model blowing across the S-7000 heatsink and a 4.5 inch (11.43 cm) model cooling the printed circuit board compartment. Because of the EMI

fig. 2. (A) Two forms of plastic power devices packages. (B) Vertical or horizontal finned sheet metal heatsinks for the above devices.
problem, the ventilation and blower opening were covered with perforated aluminum sheet metal.

No one with any electronics experience - however slight - can deny that heat is the primary killer of electronic devices. Projects or equipment that pass or deliver large amounts of either current or power must be kept cool for proper operation. The methods given in this article are simple and should be sufficient for most reader's applications. While reliability engineers and thermodynamicists may flinch at the lack of mathematical elegance, the methods are nonetheless effective.
There's only one simple rule: where there's excessive heat, remove it. What do I mean by "excessive?" If the equipment feels too hot to touch, or has a history of unexplained failures and/or repairs, then it's probably running too hot. An engineer will have specifications to meet and calculations to make, but these are beyond the scope of this article. The empirical
"skin of the thumb" rule, however, suffices for our needs.
Three basic tactics can be used either singly or in combination to dissipate heat:

- radiate more heat,
- improve natural ventilation, or
- add or increase forced-air cooling.

For most readers, water cooling isn't relevant even though some commercial broadcast transmitters use circulating water for cooling. In fact, I once worked in a 10 kW AM broadcast station that used the waste heat from the transmitter's water radiator to heat the transmitter building!

protecting transistors and IC regulators

On small projects where it's not
practical (or possible) to use forced-air cooling, you'll have to provide heatsinking for the semiconductors. In fact, even most forced-air cooled projects will need these metal radiators. Figure 1A shows the metal TO-5 transistor package. Most of these transistors are mounted on printed circuit boards and are low-signal (and lowheat) devices. But certain TO-5 transistors operate at moderate power levels (in audio drivers, for example). A "top-hat" finned heatsink (fig. 1B) is mounted on the TO-5 package to radiate heat. There are also other "spring clip" versions of this same kind of heatsink.

Figure 2A shows two forms of plastic power device package. You'll find these packages in power transistors (e.g., 2N5249), thyristors, and threeterminal IC voltage regulators. In the

fig. 3. (A) Large finned heatsink used with TO-3 transistors, high-current voltage regulators, high current diodes and SCRs. (B) The "right" and "wrong" way of forcing air over finned surfaces.
case of regulators, the devices are often rated at 750 mA in free air and 1000 mA when heatsinked. Either vertical or horizontal finned sheet metal heatsinks (fig 2B) are used to provide heat dissipation. Be sure to use a thin layer of silicone heat transfer grease between the metal tab surface on the transistor (or regulator) and the heatsink. Also be sure to tighten the mounting screw properly in order to facilitate heat transfer to the heatsink.
Sheetmetal heatsinks are used for TO-3 transistors and three-terminal regulators that are mounted on printed circuit boards. The bent sheetmetal heatsinks are good for up to about 10 watts of power, or voltage regulators up to 1.5 amperes. For the 3 -ampere, 5 -ampere, and 10 -ampere voltage regulators that also use a TO-3 package, it would be better to use a larger finned heatsink.
Often the metal chassis itself is used for heatsinking. In these cases the transistors are bolted either directly to the metal chassis or mounted with mica insulators. In both cases, silicone heat transfer grease is used between the semiconductor device and the chassis. This method is especially successful when the chassis is large or unusually thick.
Some printed circuit boards use large areas of unetched copper foil and/or large metal ridges or blocks to provide better heatsinking. This method is used especially where there are not single particular devices that can be individually heatsinked (e.g., a TO-220 transistor), but rather when there are a large number of heatproducing devices (such as TTL ICs).
There are many different forms of large, finned heatsinks used for TO-3 (and other) transistors, high current voltage regulators, high current diodes, and SCRs; fig. 3A shows a side view of one of these heatsinks. In this case, the TO-3 transistor (or other device) is mounted on the flat central surface of the heatsink with screws. In most situations, it's wise to use a thin smear of silicone heat transfer grease between the device and the heatsink. This grease is especially necessary
when a mica insulator is placed between the semiconductor device and the heatsink. Again, it's essential to make sure that the mounting screws are cinched down tight enough to allow maximum heat transfer (but not enough to distort the device package). The big concern in selecting a heatsink is the amount of surface area, measured in square inches or square centimeters.

When forced air is used to cool a heatsink - always a good idea when the power and/or current is high then the orientation of the heatsink with respect to the airflow is sometimes important. Figure 3B shows right and wrong ways to force air over the finned surfaces. Keep in mind, however, that the orientation is not always critical, especially when air from the "wrong" direction is suffi-

fig. 4. Suspending components above boards aids in air circulation and subsequent cooling.

(4)

fig. 5. Correct way of forcing air past multi-bands. (A) side view (B) top view.
cient or blows over the entire surface. The designations "right" or "wrong" are merely general considerations for some critical applications.

other components

Not only power transistors generate heat. Rectifier diodes and power resistors should be mounted with their bodies 0.125 to 0.250 inches (0.317 to 0.635 cm) off the printed circuit board (see fig. 4). This procedure allows the heat to dissipate into the air instead of into the PCB material. I've seen many phenolic and some fiberglass printed wiring boards badly damaged from the effects of a 10 -watt power resistor mounted flush to the surface. Some "bargain basement" rectifier diodes can meet their rated forward current only when the rectifier is mounted 0.50 -inch (1.27 cm) off the board and has its axial leads cut to 0.75 -inches $(1.9 \mathrm{~cm})$ or longer. Those diodes are overrated and should be used only in lower current applications or shunned entirely.

Layout is important when power components are mounted on the PCB. Try to avoid clustering power components in one small area of the board, especially when using cheap phenolic board material. Avoid placing heatsensitive parts near power components. For example, 10 -watt resistors should not be mounted adjacent to polystyrene capacitors or small transistors.

Besides reducing the operating life or limiting the power output of circuits, overheating can also decrease performance in other ways. Certain circuits - oscillators, for example - are inherently sensitive to heat. There was once a popular three-band kit-form HF transceiver that suffered immense VFO drift because the JFET VFO was located right next to the RF/IF strip tubes. Although that was such a bad design error that nothing would really "fix" the situation, a lot of Amateurs were able to improve the frequency stability markedly with some thermal insulating material placed between the RF/IF PCB and the aluminum VFO housing.

fig. 6. Another method of cooling multi-boards requires slots to be cut in socketmounting chassis.

(A)

fig. 7. Several methods available for cooling RF power amplifier tubes. (A) Airflow is directed across glass envelope by fan. (B) Air flow is forced through socket and glass air chimney.

large multi-board projects

When I first felt the temperature of my Digital Group, Inc., cabinet I took steps to get rid of the heat, and reliability was improved. Rarely does the homebrew builder have the flexibility
that I had with my Vector Electronics S-100 cabinet. In most cases, the builder must make do with only a single fan and must be clever to make best use of it. Figure 5A shows a typical large-scale multi-board project -

> V3

V4

HUSTLER 25\% OFF ALL MOBILE 6BTV	129.00
$\begin{aligned} & \text { AEA } \\ & 144 \mathrm{SR} \end{aligned}$	42.00
$\begin{aligned} & \text { BUTTERNUT } \\ & \text { HF6V } \\ & \text { HF2V } \end{aligned}$	$\begin{array}{r} 118.00 \\ +110.00 \end{array}$
RG213U	\$.26/foot
ROTATORS CD45 HAM IV T2X	$\begin{aligned} & \text { C } \\ & \text { A } \\ & \mathbf{L} \end{aligned}$
AVANTI 2M HI.Q BALUN	$\begin{array}{r} 29.95 \\ 9.95 \end{array}$
KENPRO KR400 KR500 KR600 KR5400	$\begin{array}{r} 139.00 \\ +179.00 \\ 2225.00 \\ 299.00 \end{array}$

[^6]

NEW!

EASY, FUN KIT!

New 2 kW tuner kit from TEN-TEC ends constant retuning, guarantees best match, and saves \$80! Model 4229 Only \$219

Here's the best antenna tuner in amateur radio!

The best quality components, best design, and the best value.

- Reversible "L" circuit guarantees best possible match and widest bandwidth-you may need to tune only once to cover the higher bands and only two or three times on lower bands. - Finest quality parts-ceramic insulators-ceramic inductor form-heavy duty ceramic switch with silver contacts-silver plated roller inductor-- Built-in SWR bridge shows ratios from 1:1 to 5:1 - Built-in 2 kW dual-range watt meter shows power levels from 10 to 2000 watts - Handles 2 kW PEP, 1 kW CW - Frequency range $1.8-30 \mathrm{MHz}$ continuous coverage - Built-in balun-matches variety of antennas, balanced or unbalanced, to 50 ohm unbalanced outputs - Built-in bypass switch • 4 -position antenna selector - Coax connectors plus post terminals - Lighted linear dial scale for easy tuning - Black finished aluminum cabinet with stainless stell bail ($5^{1 / 2} \mathbf{2 " ~}^{\mathrm{h}} \times 12^{3 / 4}$ " $^{\mathrm{W}} \mathrm{W} \times 13^{1 / 4} \mathbf{4}^{\prime \prime} \mathrm{d}$) • Also available assembled as Model 229 in slightly different styling at $\$ 299$.
See your TEN-TEC dealer or write for details:

TEN-TEC, INC.
Highway 411 East, Sevierville, TN 37862.

CALL LONG DISTANCE ON 2 METERS

Only 10 watts drive will deliver 75 watts of RF power on 2M SSB, FM, or CW. It is biased Class AB for linear operation. The current drain is $8-9 \mathrm{amps}$ at 13.6 Vdc . It comes in a well constructed, rugged case with an oversized heat sink to keep it cool. It has a sensitive C.O.R. circuitry, reliable SO-239 RF connectors, and an amplifier IN/OUT switch. The maximum power input is 15 watts.

Our products are backed by prompt factory service and technical assistance. To become familiar with our other fine products in the amateur radio
 market, call or write for our free product and small parts catalog.

Model 875
Kit \$109.95
Wired \& Tested \$129.95

(D) ICOM

KENWOOD

KENWOOD

 HF Equipment TS. 940 S w/AT wolatTS-430S
TS-830S
TS-530S
IC-751 9 band XCVR, 1.30 MHz

ICOM
HF Equipment
IC. 751 Xcvr ${ }^{\text {- }}$
IC-745 Xcvr
IC. 735 Xver
PS-55 Power Supply
PS-35 Power Supply
Receivers
IC-R. 7000
IC.71A
VHFIUHF
IC-02AT 2 m . HT
IC-2AT
IC-271A 2m, Base IC-27A Compact
IC-3AT, HT
IC-37A Compact Mobile IC-04AT 440 MHz , HT
IC.4AT
IC-471H $75 \mathrm{w}, 440 \mathrm{MHz}$ IC-47A
IC-3200A 25W, dual bander IC-290H 25W, 2M, SSB/FM IC-490A 10W, 440, SSB/FM RP-3010 UHF, Repeater IC. 1271A 1.2 GHz Base IC-120 mobile

List Juns 1399.00 Call \$ 999.00 Call \$ 849.00 Call \$ 160.00139 .95 160.00139 .95
899.00 Call \$ 799.00599 .95
349.00 Call \$ 269.00 Call \$ 699.00 Call \$ 369.00 Call \$ 299.00 Call \$ 449.00 Call $\$$ 379.00 Call \$ 299.00 Call \$ 1099.00 Call \$ 469.00 Call \$ 549.00 Call \$ 549.00 Call \$ 649.00 Call \$ 999.00 Call \$ 999.00 Call \$ 499.00 Call \$

$\sqrt{12}$ ²

2.1 to 3.0 GHz

 SWEEP GENERATOR- Maximum sinosodial sweep from
 21103.0 GHz
- Output varies less than ± 2 Db

RMSWG - 21-3.0/5144.00 1

- Output is attenuated to about 0 DBm and transtormed to about 52 ohms with 20 ft . of RG. 58 cable (BNC plug)
- 60 Hz horizontal sweep w/phase control
- Regulated +12 VDC and -15 VDC output at less than 50 Ma .
- Input power is 120 VAC
- Other microwave test and communications equipment available
- Prices include postage/handling if order includes check or money order
- F.O.B. Brookfield, MO for C.O.D. or charge orders
ROENSCH MICROWAVE R. A. 1, Box 156 8 816-895-5431 BROOKFIELD, MISSOURI 64628 k
- 156

Please add $\$ 3.50$ to cover shipping and handing

fig. 8. Temperature sensing circuit provides voltage proportional to circuit temperature.
such as a microcomputer or transceiver - in which plug-in printed wiring boards are installed on a socketed motherboard. Usually, these PCBs are mounted in a closed cabinet for reasons of both EMI shielding and aesthetics.

If we apply air broadside to the PCBs, then only the first board in the line-up will benefit. Figure 5B shows a top view that allows visualizing right and wrong airflow directions. Obviously, air coming in from the sides is able to remove heat from more of the PCBs with greater efficiency.

Figure 6 shows a method used by a friend of mine who built a homebrewed 6502 -based computer. He used a large metal chassis with a motherboard mounted on it to hold the PCBs. He cut $3 / 4$ inch (1.9 cm) holes in both the chassis top and the motherboard to admit air between the boards. (Although only one hole is shown between each board in this side view, there were four per row in the actual project.) Air from the blower flowed up through the holes and across the electronics components on the PCBs.

Linear amplifiers and high-power transmitters pose special heat problems. Some linears, for example, are only 45 percent efficient. Therefore, a 1000-watt linear amplifier delivers 450 watts of usable RF power and 550 watts of waste heat. To make matters even worse, the necessity of keeping harmonics at home means we button up all that heat in a shielded metal cabinet.

Most RF power amplifier tubes used in Amateur Radio equipment must be cooled with forced air in order to realize their full ratings (some are absolutely dependent on cooling). Figure 7 shows two methods for providing the needed cooling air. In fig. 7A we see a situation in which a blower is mounted so that the air flow is directly over the glass envelope. The fan may be mounted either outside the RF compartment (as shown) or inside, as in the Heath SB-221.

The other method, shown in fig. 7B, assumes the use of "air system" tube sockets. A blower or fan supplies air to the bottom side of the socket and the air is directed upwards through holes in the socket and around the glass evelope. A "chimney" aids in keeping the airflow against the glass. Some air system sockets have plumbing connections for the air hose, while others depend upon pressurization of the lower compartment. In either case, this socket is better because the pin seals with the glass are kept cooler.

The plate cap pin seal should also be kept cool, if possible. Toward this end, some builders use a finned "heat dissipating" plate cap to make electrical connection to the anode.

temperature measurement

In some cases we'll want to provide either continuous for temporary monitoring of the actual operating temperatures. Although there are elegant methods using thermocouple junctions, we can use a simple, low-cost PN junction temperature sensor. National Semiconductor and others manufacture such devices. Figure 8 shows the simplest circuit for the National Semiconductor LM-335 diode device. The LM- 335 will measure temperature over the range -10 to +100 degrees $F(-23$ to +38 degrees C). In the circuit shown, the output across the diode will be 10 millivolts per degree Kelvin. Degrees Kelvin are the same as degrees Celsius, except that they're referenced to absolute zero instead of the freezing point of water (note: 0 degrees $\mathrm{C}=273$ degrees K).

If you merely want to measure the temperature, then install the LM-335 "diode" on the PCB and solder-tack the wires to it. The temperature can then be measured with an ordinary voltmeter. Otherwise, mount it permanently on the PCB. Another application is to use the voltage from the LM-335 to turn on a fan or an alarm when the temperature reaches a certain critical limit. A high-power commercial transmitter uses one of these devices on each PCB and inside each subassembly compartment and then monitors all of them with a multichannel A/D converter connected to a small "single-board computer/controller." A shut-down program can turn off the transmitter in an orderly manner - or warn the operator when the temperature gets too high.

conclusion

Heat is the great destroyer of electronic components. If a piece of equipment runs too hot, then the result will be unreliable operation, frequent breakdowns, and all the headaches that accompany low reliability. The simple methods shown in this article will enable you to build and/or modify equipment to gain the longest and most reliable use possible.
ham radio
 T144/28
144 MHz TRANSVERTER. $25 \mathrm{~W} \$ 189$ T220/28
220 MHz TRANSVERTER. $15 \mathrm{~W} \$ 229$
WATER COOLING JACKETS
for 2C39, 7289 etc. $\$ 10$
ALL PRICES IN USS SHIPPING INCLUDED
TRANSVERTERS UNLIMITED
BOX 6286 STATION A TORONTO, ONTARIO CANADA M5W 1P3
HANS PETERS (VE3CRU) 157
(416) 759-5562, EVENINGS

THE MOST AFFORDABLE REPEATER ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES (AND GIVES them to you as standand equipmenti)

Band $10 \mathrm{M}, 6 \mathrm{M}$, $2 \mathrm{M}, 220$	$\$ 680$	Wit
440	$\$ 780$	$\$ 980$

FEATURES:

- SENSITIVITY SECONDTONONE; O.15uV (VHF), 0.2uV (UHF)TYP.
- SELECTIVITY THAT CAN'TBE BEAT! BOTH 8 POLEXTAL FILTER $\&$ CERAMIC FILTERFOR $>100 \mathrm{dBAT} \pm 12 \mathrm{KHZ}$. HELICALRESONATOR FRONT ENDS TO FIGHT DESENSE \& INTERMOD.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER \& CONTROL.
- CLEAN, EASYTUNETRANSMITTER; UPTO2OWATTSOUT(UPTO 50W WITH OPTIONAL PA).
- R144/R220 FM RCVRS for 2 M or 220 MHz . 0.15 uV sens.; 8 pole xtal filter \& ceramic filter in i-f, helical resonator front end for exceptional selectivity, $>100 \mathrm{dBat} \pm 12 \mathrm{kHz}$, best available today. Flut-ter-proof squelch. AFC tracks drifting xmtrs. Xtal oven avail. Kitonly $\$ 138$.
- R451 FM RCVR Same but for uhf. Tuned line front end, 0.3 uV sens. Kit only $\$ 138$.
- R76 FM RCVR for $10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}$, or 220. As above, but w/o AFC or hel. res. Kits only $\$ 118$. Also avail w/4 pole filter, only $\$ 98 / \mathrm{kit}$.
- R110 VHF AM RECEIVER kit for VHF aircraft or ham bands or Space Shuttle. Only $\$ 98$.
- T51 VHF FM EXCITER for $10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}$, or 220 MHz . 2 W atts continuous, up to 3 W intermittent. \$68/kit.
- T451 UHF FM EXCITER 2 to 3 Watts. Kit only $\$ 78$. Xtal oven avail.
- VHF \& UHF LINEAR AMPLIFIERS. For either FM or SSB. Power levels from 10 to 45 Watts to go with exciters \& xmtg converters. Several models Kits from $\$ 78$.

NOW-FCC TYPE-ACCEPTED TRANSMITTERS \& RECEIVERS AVAILABLE FOAHIGH-BAND \& UHF. CALL FOR DETAILS.

RECEIVING CONVERTERS

Models to cover every practical rf \& if range to listen to SSB, FM, ATV, etc. NF $=2 \mathrm{~dB}$ or less.

Kit with Case
Less Case
Wired

UHF MODELS			
Kit with Case	559	435-437	28-30
Less Case	\$49	432-436	144-148
Wired	\$75	432-436	50-54
	\$75	439.25	61.25

SCANNER CONVERT ERS CO
ner. Wired/tested ONLY $\$ 88$.

TRANSMIT CONVERTERS

For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 Watts output vhf, 1 Watt uhf.

For VHF,	Exciter Input Range	Antenne Output
Model XV2	28.30 $28-29$	1444146 $145-146$
Kit \$79	28-30	$145-146$ $50-52$
	27-27.4	144-144.4
Wired \$149	$\begin{aligned} & 28-30 \\ & 50-54 \end{aligned}$	$\begin{aligned} & 220-222^{\circ} \\ & 220-224 \end{aligned}$
(Specity band)	$\begin{gathered} 144-146 \\ 50-54 \end{gathered}$	$\begin{gathered} 50-52 \\ 144-148 \end{gathered}$
	144-146	28-30
For UHF,	28-30	432-434
Model XV4	28-30	$435-437$ $432-436$
Kit \$99	61.25	439.25
	144-148	432-436*
Wired \$169	- Add $\$ 20$ for 2 M input	

VHF \& UHF LINEAR AMPLIFIERS. Use with above. Power levels from 10 to 45 Watts. Several models, kits from $\$ 78$.

LOW-NOISE PREAMPS

Hamtronics Breaks the Price Barrier!

No Need to Pay $\$ 80$ to $\$ 125$ for a GaAs FET Preamp.

FEATURES:

- Very Low Nose: 0.7 dB VHF, 0.8 dB UHF
- High Gain: 13 to 20 dB , Depending on Freq.
- Wide Dynamic Range for Overload Resistance
- Latest Dual-gate GaAsFET, Very Stable

MODEL		TUNES RANGE		PRICE
	LNG-28			$26-30 \mathrm{MHz}$
		$\$ 49$		
LNG-50		$46-56 \mathrm{MHz}$		$\$ 49$
LNG-144		$137-150 \mathrm{MHz}$		$\$ 49$
LNG-160		$150-172 \mathrm{MHz}$		$\$ 49$
LNG-220		$210-230 \mathrm{MHz}$		$\$ 49$
LNG-432		$400-470 \mathrm{MHz}$		$\$ 49$
LNG-800	$800-960 \mathrm{MHz}$		$\$ 49$	

HELICAL RESONATOR

 PREAMPSLow-noise preamps with helical resonators reduce intermod and cross-band interference in critical applications. 12 dB gain.

Model	Tuning Range	Price
	$143-150 \mathrm{MHz}$	$\$ 49$
HRA-220	$213-233 \mathrm{MHz}$	$\$ 49$
HRA-432	$420-450 \mathrm{MHz}$	$\$ 59$
HRA-()	$150-174 \mathrm{MHz}$	$\$ 54$
HRA-()	$450-470 \mathrm{MHz}$	$\$ 64$

MINIATURE PREAMPS
GaAsFET Preamps with fea-
tures similar to LNG, ex-
cept designed for Low

IN-LINE PREAMPS

NEW

GaAsFET Pro.
GaAsFET Pro.
amp with tea. tures like LNG. Automatically
 switches out of line during transmit. Use with base or mobile transceivers up to 25W. Tower mtg hdwr incl.
MODEL TUNES RANGE KIT WIRED

LNS-144 $\quad 120-150 \mathrm{MHz} \quad \$ 68 \quad \$ 98$ LNS-160 $\quad 150-180 \mathrm{MHz} \quad \$ 68 \quad \$ 98$ LNS-220 $\quad 200-240 \mathrm{MHz} \quad \$ 68 \quad \$ 98$ LNS-432 $\quad 400-500 \mathrm{MHz} \quad \$ 68 \quad \$ 98$

ACCESSORIES

- MO-202 FSK DATA MODULATOR. Run up to 1200 baud digital or packet radio signals through any FM transmitter.
- DE-202 FSK DATA DEMODULATOR
- COR-2 KIT With audio mixer, local speaker amplifier, tail \& time-out timers.
- COR-3 KIT with "courtesy" beep".
- DTMF DECODER/CONTROLLER KITS
- AUTOPATCH KITS. Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control.
- CWID KITS - SIMPLEX AUTOPATCH

- Send $\$ 1$ for Complete Catalog

(Send $\$ 2.00$ or 4 IRC's for overseas mailing)

- Order by phone or mail • Add \$3 S \& H per order
(Electronic answering service evenings \& weekends)
- Use VISA, MASTERCARD, Check, or UPS COD.

VHFIUHF WORLD

33 cm - our newest band

CQ, CQ, CQ, this is KM2XMS calling CQ 33 centimeters . . .

Silence . . . except for white noise.
No one in my area had gear, although a few of us had FCC Experimental Licenses with those funny call signs. But now that's all changed, because on September 28, 1985, the FCC released our newest band, 33 cm , $902-928 \mathrm{MHz}$. Unfortunately for me, an initial band opening QSO was cancelled as hurricane Gloria flattened our area that very day. Power wasn't restored for five days, so no opening day QSO's were possible. (Yes, I have a generator on order, but so do 5000 other people in my area.)

Now that it's ours, the new $33-\mathrm{cm}$ band holds lots of promise for Amateurs. It's a generous chunk of spectrum - 26 MHz - nestled between the prime real estate of the communications companies and adjacent to the UHF television band. This means that there should be more equipment (components especially) available, than for the $23-\mathrm{cm}$ band ($1240-1300 \mathrm{MHz}$), where high power linear tubes are scarce.

Amateur Service on the $33-\mathrm{cm}$ band is secondary to industrial, scientific, and medical (ISM), but this probably won't cause too many Amateurs any grief. However, restrictions will apply to Amateurs in Colorado, Wyoming, the United States possessions in Region 3 and those hams located near the White Sands Missile Range. The
rest of us should enjoy a clean spectrum free of spurious generators and radars.

In order to get the ball rolling on 33 cm, I've updated the material I presented at the Eighth Annual Eastern VHF/UHF Conference in Nashua, New Hampshire, on May 17, 1983. This month's column will illustrate these entry-level circuits and techniques and should provide the necessary impetus to generate activity on the $33-\mathrm{cm}$ band until more Amateur designs and commercial gear are forthcoming.

overview of the band

Our newest Amateur UHF band, large compared with the lower VHF

VUAC Bandplan. See Ref. 1 for more detail.	
Segment	Use
902-904 MHz	Narrow-bandwidth weaksignal communications with 903.0-903.05 exclusively for EME and 903.1 MHz as the weak signal calling frequency.
904-906 MHz	Digital communictions.
$\mathbf{9 0 6 - 9 0 7 ~ M H z}$	Narrow-bandwidth FM simplex with 906.5 MHz as National simplex frequency.
907-910 MHz	FM repeater inputs.
910-916 MHz	ATV.
916-918 MHz	Digital communications.
918-919 MHz	Narrow-bandwidth FM control links and remote bases.
919-922 MHz	FM repeater outputs.
922-928 MHz	Wide-bandwidth experimental, simplex, ATV, spread spectrum.

and HF bands, permits the greatest variety of authorized transmission modes. Hence, there's considerable interest in how the band will be subdivided among the various interest groups.

The ARRL VUAC (VHF/UHF Advisory Committee), in conjunction with the VRAC (VHF Repeater Advisory Committee) has set up the interim band plan shown in table 1. ${ }^{1}$ Note that the narrow-bandwidth, weak-signal segment (the frequencies to which this column is usually dedicated) is the lower 2 MHz of the band. Of prime interest is the weak signal calling frequency, 903.1 MHz , around which most of the communications on CW and SSB will probably prevail.

Radio propagation on this band will be very similar to that experienced on the $70-(420-450)$ and $23-\mathrm{cm}$ bands. Foliage attenuation will be more of a problem on 33 cm than on 70 cm , but scatter propagation should be better. This band should be perfect for EME, since small (i.e. 12-15 feet or 3.5-4.5 meter) diameter parabolic dishes should be sufficient to produce reasonable echos with 500 watts of transmitted power at the antenna feed. Additional information on propagation can be found in references 2 and 3 .

antennas and transmission lines

This band is in a transitional antenna region. While Yagi types of antennas should work, they will require close tolerances (0.04 inch or 1 mm) if the desired performance is to be attained.

* QUALITY PABTS

P.C style $\mathbf{\$ 1 8 . 0 0}$
10 tor $\mathbf{\$ 1 8 . 0 0}$
$22 / 44$ EDGE CONNECTOR
solder lug style $\quad \$ 2.50$ each solder lug style
28/56 EDGE CONNECTOR 28/56 EDGE CONNECTOR
P.C. style $\$ 2.50$ each 10 for $\$ 22.00$ $\begin{array}{cc}38 / 72 \text { EDGE CONNECTOR } \\ \text { PC style } & \$ 3.00 \mathrm{each}\end{array}$ $\begin{array}{cc}\text { 43/88 EDGE CONNECTOR } \\ \text { PC. style } & \$ 4.50 \text { each }\end{array}$

TRANSFORMERS

TRANSFORMERS

SPECIALS
 100 for 54.50
1000 for $\$ 30.00$

SOLDER TAIL I.C. | 1000 tor $\$ 30.00$ |
| :---: |
| SOLDER TAIL I.C. |
| SOCKETS |
| 24 PIN |
| 100 for $\$ 22.00$ |
| 1000 or $\$ 2.50$ |

SPECIAL PRICE TRANSISTOR plastic iransisior PN 3569 TO 92 N.P.N 100 for $\$ 8.00$ 1000 for $\$ 60.00$ avall able

48 KEY ASSEMBLY FOR COMPUTER OR
 HOBBYIST

NEWT.I. KEYBOARDSS. Originally

 used on computers, these key-boards contain 48 S.P S mech. anical switches. Terminates to
15 pim connector. Frame $4^{\prime \prime} \times 9^{\prime \prime}$
CAT $\# \mathrm{KPP} 48$
2 for $\$ 11.50$ each 2 for $\$ 11.00$
MICRO-CASSETTE MECHANISM
 micro-cassettes. 3 vdc operation
Contains. drive motor beit, head
capstan, pinch whee and other
components. $31 / 2^{\prime \prime} \times 21 / 4^{\prime \prime} \times 5 / 8^{\prime \prime}$
CATH MCMEC CATH MCMEC $\$ 3.00$ each 10 tor $\$ 27.50$

COMPUTER GRADE CAPACITORS

$2,000 \mathrm{mfd} .200 \mathrm{vac}$
$13 / 4^{\circ} \times 5^{\prime} \mathrm{nigh}$ $6,400 \mathrm{mftd} .60 \mathrm{Vdc}$
$13 / 8^{\prime \prime} \times 33 / 4^{\prime \prime}$ high $\$ 2.50$ $9,700 \mathrm{mid}$. 50 V $V \mathrm{Vc}$
$13 / 8^{\prime \prime} \times 41 / 2^{\prime \prime}$ high $13 / 8^{\prime \prime} \times 41 / 2^{\prime \prime}$ high $\$ 300$
31,000 mid. 15 vac $13 / 4^{\prime \prime} \times 4^{\prime \prime}$ high $\$ 250$ $\begin{array}{ll}3 . \times 53 / 4 " \text { high } & \$ 450 \\ 66,000 \mathrm{mfd} .15 & \mathrm{Vdc}\end{array}$ $66,000 \mathrm{mfd} .15 \mathrm{Vdc}$
$3^{\prime \prime} \times 33 / 4^{\prime \prime}$ nigh $\$ 300$
$60,000 \mathrm{mtd} .40 \mathrm{Vdc}$ $60,000 \mathrm{mid} .40 \mathrm{Vdc}$
$3^{\circ} \times 5 \mathrm{~F}$ high
65.000 mid
 $86,000 \mathrm{mld} .30 \mathrm{Vdc}$
$3 . \times 51 / 4 \mathrm{nigh}$ 5,500 mid. 30 vac $\$ 350$ $5,900 \mathrm{mid} .30$ Vde $\$ 1.00$ $13 / 8^{\prime \prime} \times 21 / 4^{\prime \prime}$ high $\$ 1.00$
$9,300 \mathrm{~m} / \mathrm{d} .50 \mathrm{Vac}$ $1 " \times 4$ 1/2" high 10 Vde

18.000 mld .00	18.000
$13 / 8^{\prime \prime} \times 25 / 8^{\prime \prime}$	
high	
48	
1000	$48,000 \mathrm{mfd} .10 \mathrm{vdc}$ $21 / 2^{\prime \prime} \times 31 / 4^{\prime \prime} \mathrm{high} \$ 1.00$

$100,000 \mathrm{mfd} .10 \mathrm{Vac}$ $21,2 " \times 6^{\prime \prime}$ high $\quad \$ 1.00$
$185,000 \mathrm{mfd} .6 \mathrm{Vdc}$

13.8 VDC REGULATED POWER SUPPLY

 IPGE. $Q 1 / 2 \mathrm{amp}$ constant. 4 amp Eine $\theta^{2} 3$ amp constant, 5 amp surge $\$ 25.00$ each
D.C. CONVERTER

 .

$\begin{gathered} 220 \mathrm{Vac} \\ \text { COOLING FAN } \end{gathered}$
ROTRON \# Mxiza3 220 Vac melal squmera CAT\#CF-220 $\$ 6.50$ ea OLOR $\$ 6000: 100$ IOr $\$ 50000$ OUANTITIES AVAILABLE SPRING LEVER TERMINALS

LINE CORDS

TWO WIRE
6. 18/2 SPT-1 flat 3 for $\$ 1.00$

6 18/2 SPT-2 flat 2 for $\$ 1.00$
6 16/2 SJT round $\$ 1.25$ oech
THREE WIRE
$\begin{array}{ll}618 / 3 \text { fiat } & \$ 1.50 \text { each } \\ 818 / 3 \text { round } & \$ 2.00 \text { each }\end{array}$
7 CONDUCTOR

RIBBON CABLE

Spectra-strip red marker strip. 35.00 per 100° roll XENON FLASH TUBE
$3 / 4$ "long $\times 1 / 8$ " dia. Flash tube designed for use in compact camera flash units Ideal for experimentors.
CATH FLT. 2 for $\$ 1.00$

MINIATURE TOGGLE SWITCHES

S.P.O.T. (on-on)	S.PD.T. (on-on)	S.P.D.T. (on-off-on)
P.C. style non-Itreaded	Solder lug terminals.	Solder lug
bushing.	\$1.00 each	\$1.00 each
$\begin{aligned} & 75 \mathrm{c} \text { each } \\ & 10 \text { tor } \$ 7.00 \end{aligned}$	10 for $\$ 9.00$ N 100 for $\$ 80.00$	$\begin{aligned} & 10 \text { for } \$ 9.00 \\ & 100 \text { for } \$ 80.00 \end{aligned}$
S.PD.T. (on-off-on)	S.PD.T. (On-on)	$\begin{aligned} & \text { D.P.D.T. } \\ & \text { (on-on) } \end{aligned}$
PC. style	PC. lugs threaded	Sotder lug
busning mat	bushing.	\$2.00 each
75terch 10 for 57.00 UUV	$\begin{aligned} & \$ 1.00 \text { each VUT } \\ & 10 \text { tor } 39.00 \end{aligned}$	10 Ior $\$ 19.00$ 100 tor $\$ 180.00$
10 tor 37.00 UV	10 for 39.00 100 for $\$ 80.00$	100 tor $\$ 180.00$

STANDARD JUMBO DIFFUSED T 1-3/4 RED $\quad \begin{array}{r}10 \text { for } \$ 1.50 \\ 100 \text { for } \$ 13.00\end{array}$ GREEN $\mathbf{1 0 0}$ for $\$ 13.00$ 100 for $\$ 17.00$ YELLOW $\begin{array}{r}10 \text { for } \$ 2.00 \\ 100 \text { for } \$ 17.00\end{array}$枿 FLASHER LED 5 volt operation
red jumbo $11 \% / 4$
size $\$ 1.00$ each NEW GREEN FLASHER CAT \# LED-4G $\$ 1.00$ BI-POLAR $\begin{array}{r}\text { jumbat } 1 \psi_{6} \text { size } \\ 2 \text { for } \$ 1.70\end{array}$ LED HOLDERS
Two piece nodder Two piece hotder
for jumbo LED for jumbo
10 for $\$ 5 t$
CLEAR CLIPLITE

LED HOLDER
Make LED a tancy
indictior. Clear.
4 for $\$ 1.00$
4 for $\$ 1.00$

THEEKTHOTKSCORR
LOS ANGELES. CA
905 S Vermon: Ave
905 S. Vermor
$213380-8000$
VAN NUYS, CA STORE
6228 Sepulve
$818997-1806$

MAIL ORDERS TO

PO. BOX 20406

Las Angeles, CA 90006
TWX - 5101010163 ALL ELECTAONIC EASYLINK MEX -62B87748

QUANTITIES LIMITED MINIMUM ORDER $\$ 10.00$ 1-800-826-5432 (IN CALIFORNIA: 1-800-258-6666) FOREIGN ORDERS: ALASKA. HAWAII.
OR INFORMATION (213) $380-8000$

The most probable antennas will be the parabolic dish and the loop Yagi. Details on parabolic dish design and construction can be found in references 4 and 5. Several loop Yagi designs are described in reference 6.

The loop Yagi designs described in reference 6 can be scaled to the $33-\mathrm{cm}$ band, but they will be either too long or too short, based on commonly available boom material. Therefore, 1 designed a 12 -foot (3.65 meter), 33element loop Yagi for 903 MHz using standard material stock. Its construction is shown in fig. 1.

This loop Yagi design should be duplicated exactly as shown if the gain of $19-19.5 \mathrm{dBi}$ is to be attained. If any changes in the boom diameter, loop thickness or width are desired, the loops must be lengthened or shortened accordingly. This procedure, described in detail in reference 6 , should be followed very closely.

Transmission lines must be carefully chosen. RG-8 and RG-213/U types should be used sparingly since they have a loss of about 8 dB per 100 feet (30.5 meters). Belden 9913, hardline and Heliax ${ }^{\text {TM }}$ are recommended. A thorough discussion of transmission line selection and nominal losses are covered in reference 7.

up/down converters and transverters

Receive and transmit up/down converters are often used on the VHF/ UHF bands. More recently, transverters have been gaining popularity; the advantages and disadvantages were discussed in references 8 and 9 , so they won't be repeated here.

Suffice it to say that transmit upconverters/transverters are preferred to multipliers since they will allow CW and SSB to be used at will. Furthermore, I recommend the modular approach to design, especially since this band is new and components and circuits can be easily upgraded as the available devices are selected and designed into improved circuits.

mixers

When designing a linear up/down

	Pt 2	Element	Spacing	Circumference
		Refl. 2	1.000	13.949
		Refl. 1	5.454	13.949
		Dr.EI.	6.819	13.313
		Dir. 1	8.428	11.900
		Dir. 2	9.621	11.900
feto	- ${ }^{\circ}$	Dir. 3	12.178	11.900
		Dir. 4	14.736	11.900
		Dir. 5	16.532	11.900
	R 2	Dir. 6	19.851	11.900
		Dir. 7	24.966	11.900
		Dir. 8	30.081	11.900
		Dir. 9	35.196	11.900
		Dir. 10	40.311	11.900
		Dir. 11	45.426	11.900
		Dir. 12	50.541	11.539
		Dir. 13	55.656	11.539
		Dir. 14	60.771	11.539
		Dir. 15	65.886	11.539
		Dir. 16	71.001	11.539
		Dir. 17	76.116	11.539
		Dir. 18	81.231	11.107
		Dir. 19	86.346	11.107
		Dir. 20	91.461	11.107
		Dir. 21	96.576	11.107
		Dir. 22	101.691	11.107
		Dir. 23	106.806	11.107
		Dir. 24	111.922	11.107
		Dir. 25	117.037	11.107
		Dir. 26	122.152	11.107
		Dir. 27	127.267	11.107
	-19a	Dir. 28	132.382	11.107
	ω	Dir. 29	137.497	11.107
	0	Dir. 30	142.612	11.107

Notes:

1. Dimensional tolerances should be held to ± 0.013 with ± 0.04 inch maximum.
2. Reference all spacing from end of boom to prevent tolerance buildup.
3. Loop length should be approximately $1 / 2$ inch longer than circumference shown to allow $1 / 4$ inch overlap on each end of strap. The circumference dimension shown is the actual distance between holes as shown. The straps on this design are made from 0.062 -inch thick aluminum $3 / 8$ inch wide. Any deviations from this width or thickness must be compensated for or performance will deteriorate.
4. The driven element is made from brass 0.020 inch thick and $3 / 8$ inch wide. Details are shown below.
5. Adjust height for best VSWR.
fig. 1. A recommended 33 element loop Yagi for the 33 cm band. Gain is approximately 19 dBi and beamwidth is approximately 20 degrees. Recommended stacking distance is 34 inches $(86 \mathrm{~cm})$ in the E plane and 32 inches $(81 \mathrm{~cm})$ in the H plane. See reference 6 and text for further details.

fig. 2. A recommended mixer circuit for a receive type down-converter. Conversion loss is approximately 9 dB overall. LO level should be between 5 and 15 milliwatts. If a 28 MHz IF is not used, the diplexer must be modified as described in text. See text for other recommended dBm's.

fig. 3. A recommended mixer circuit for a transmit type up-converter. Overall conversion loss is approximately 9 dB . LO level should be between 5 and 15 milliwatts. IF input level should not exceed 1 milliwatt. See text for other recommended dBm's.
converter, the first requirement is to choose a mixer. For many of the reasons mentioned in references 8 and 9, I recommend the doubly-balanced mixer (DBM) and, more specifically.
the commercial packaged units. Many are available, but they must be carefully chosen since most of the commonly available types are restricted to 500 MHz and down.

The Minicircuits Labs SBL-1X (at \$5.95), the SBL-12 (at \$6.95), the TFM-2 (at \$11.95) - all prices are given for quantities of 10 to 49 - or the Anzac Electronics MD 110 (at

fig. 4. A simple single section 903 MHz bandpass filter for protecting the front end of a receiver. Bandwidth is approximately 100 MHz and insertion loss is 0.5 dB maximum.

4.L2: $\quad 0.125-\mathrm{inch}(3.2 \mathrm{~mm})$ wide copper or brass strap $;$ inch $(2.54 \mathrm{~cm})$ tong capped at 0.25 inch trom grounded enc. C1. C2: 1.6 pF low-loss air
variable.
Notes:

1. L1 and

fig. 5. Circuit of a simple two-section bandpass filter suitable for a 33 cm lowlevel receiver or transmitter. Bandwidth is approximately 50 MHz and insertion loss is 0.5 dB .
$\$ 19.00$ each) are recommended. DBMs from other suppliers are likewise usable as long as they're specified to work up to at least 1 GHz .

fig. 6. A simple low noise preamplifier for a 33 cm receive type converter. Gain is approximately 12 dB and noise figure is $\mathbf{2 . 5 - 3} \mathrm{dB}$ typical. If the $\mathbf{2 0 0}$ ohm resistor in the constant current source is changed to 100 ohms, it will function well as a low-level linear transmitter amplifier stage as discussed in text.

A recommended receive-type downconverter DBM circuit is shown in fig. 2. I prefer 28 MHz for an IF. The diplexer shown on this circuit is for 28 MHz , per reference 9 . Other IF's can be used, but the diplexer shown will have to be scaled to the new IF frequency or be eliminated. A recommended IF post amplifier is described in reference 10.

Figure 3 shows a recommended low-level DBM circuit for a transmit up-converter. The operation of this circuit is described in reference 8. This circuit will easily handle any desired IF up to 150 MHz . The IF input level must not exceed 1 milliwatt.

filters

Figure 4 shows a simple input filter that can be used ahead of a receive down-converter, especially if the input stage is untuned. It is not exotic, but will eliminate such out-of-band signals as TV, FM, etc. This filter is easier to build than a coaxial cavity, and its
unique topology has a symmetrical response. ${ }^{11}$
A simple two-section bandpass filter is shown in fig. 5. It should be used in the receive down-converter just ahead of the mixer to eliminate any out-of-band signals from reaching the mixer. This filter should also be used after the transmit mixer to prevent amplification of local oscillator, image and spurious signals generated by the mixer from being amplified in the transmitter.
These filters are simple, but neither is real state-of-the-art. Interdigital types of filters with three sections are recommended for improved filtering per reference 11, but are beyond the scope of this month's column.

low-level receiver preamplifiers.

The MRF 901 bipolar transistor is a readily available (Radio Shack), lowcost device (under $\$ 2.00$) that is simple and straightforward to use. A

fig. 7. A recommended local oscillator circuit for a 33 cm up or down-converter. Any frequency between 100 and 115 MHz will work well. 109.3625 MHz is recommended for a 28.1 MHz IF. Output power level is approximately 10 milliwatts.
recommended circuit patterned after a previous design ${ }^{12}$ is shown in fig. 6. It uses series feedback and simple matching to achieve a moderate 2.5-3 dB noise figure. It also has some builtin selectivity and reasonably high output power (over 5 milliwatts at 1 dB compression).
A single preamplifier stage such as this one will normally be sufficient to yield an overall $3-4 \mathrm{~dB}$ noise figure in a typical converter as just described. Two such preamplifers can be used in cascade if a lower noise figure is desired.

If a very low noise figure (less than 1 dB) is required, the 902 MHz GaAs FET preamplifier in reference 13 can be used. However, this particular design has little if any input selectivity to reject transient or lower frequency emitters. Therefore, if this circuit is used, 1 recommend adding a $25-100 \mathrm{pF}$, lowloss ceramic chip-type capacitor in series between the input connector and the first circuit elements.

Other GaAs FET circuit recommendations are described in reference 14. Reducing the size of the input inductor and capacitors in the circuit in this reference should yield a very accepta-
ble noise figure with "built-in" frontend selectivity, thus killing two-birds with one stone.

local oscillators and multipliers

So far I have not mentioned a suitable local oscillator. The $33-\mathrm{cm}$ band is unique in that it can be easily served with a simple crystal oscillator operating in the 100 MHz region and followed by three doublers. This is a recommended approach. ${ }^{9}$

Figure 7 shows a recommended oscillator circuit similar to the one described in reference 9 . If a crystal cut for 109.3625 MHz is used, the IF for 903.0 MHz will be 28.1 MHz , a favorite IF of mine. ${ }^{9}$ This circuit has been widely used. A low-pass filter has been added to the output to decrease oscillator harmonics. I recommend placing this oscillator in its own shielded box, away from heat and extraneous RF signals.

Figure 8 shows a recommended multiplier circuit that consists of three doublers. It has a clean output and is relatively easy to align. The RF output level is sufficient to directly drive the DBM circuits. This circuitry is similar
to that described in reference 9 and has been extended to the $33-\mathrm{cm}$ band. It should also be placed in its entirety in a shielded box.

If a transverter is used, the multiplier output power is sufficiently high enough so that it can be divided into two equal outputs. A Wilkinson-type power splitter is recommended since it has negligible loss lover the inherent 3 dB power split) and provides high isolation (20 dB typical) between the two outputs. Hence there will be very little, if any, interaction between the receiver and transmitter. The Wilkin-son-type power splitter I use is shown in fig. 9. Both transmission lines are 75 ohms and are electrically a quarterwavelength long at the local oscillator output frequency.

transmitter circuits

Finally we come to the transmitter. The output of the DBM shown in fig. 3 will be about 16-17 dB below a milliwatt with one milliwatt of IF drive, the maximum recommended level for a clean transmitter output. The DBM should be followed by either the filter shown in fig. 5 or an equivalent as described.
This low-level output after the filter can be easily boosted up to a moderate power level with two amplifier stages, similar to the receive preamplifier shown in fig. 6. All that's required is to change the 200 -ohm resistor in the constant current source to 100 ohms and remove the protection diode, CR1. Gain will then be about 13 dB per stage and the 1 dB output compression point will increase to about 10 milliwatts.

Alternatively, Toshiba and NEC now make low-cost (\$7-10), 902-905 MHz low-level linear hybrid modules. The Toshiba module part number is S AU15; the NEC model part number is MC-5809. * Both units require about 8 volts DC. Gain is just over 20 dB and the 1 dB output compression point is

[^7]
fig. 8. A recommended multiplier circuit suitable for a 33 cm local oscillator. Each stage is a doubler with the final output frequency in the $\mathbf{8 0 0 - 9 0 0} \mathrm{MHz}$ region. The oscillator in figure $\mathbf{7}$ is recommended as the driver. Output power is approximately $\mathbf{1 0 - 2 0}$ milliwatts with an input of $5-10$ milliwatts.

fig. 9. A Wilkinson type two-way in-phase power splitter suitable for local oscillator power splitting in the range of $800-900 \mathrm{MHz}$. Other frequencies can be used by adjusting the length of the 75 ohm coax for 0.25 electrical wavelength at the desired frequency.
mended. ${ }^{14,15}$ I'm sure Amateur designs using these tubes will be published shortly.

For even higher power, I'm aware of only one published Amateur design. ${ }^{16}$ UHF TV tansmitting tubes should be readily available, especially as "pullouts." The RCA 7650 and 7213 immediately comes to mind. Cavity-type amplifiers using these or other suitable tubes are recommended. ${ }^{15,16}$ I'm sure that many designs will be forthcoming as interest picks up in this new band.
over 100 milliwatts. A typical circuit using these modules is shown in fig. 10.

For higher linear power, CATV-UHF type bipolar transistors can be used. A recommended circuit, patterned after the circuits described in reference 8 , is shown in fig. 11. Gain is typcially 13 dB per stage with a 1 dB compression point of 300 milliwatts. One or two stages can be used, depending on the desired gain and output power. This power level is more than adequate for local (i.e. up to 25 miles or 40 km) QSO's.

For even higher solid-state linear output power, transistors similar to the NEC NE0801 (11 watts) are recommended. ${ }^{2}$ I'm sure there are many other devices available from suppliers such as Acrian, Motorola, TRW, and Thompson-CSF's Solid State Microwave Division. Time and space does not allow for a detailed description of such circuitry at this time.

For "quick and dirty" gain, Class " C " can be used. The same suppliers just mentioned can supply suitable class " C " bipolar transistors to at least 25-50 watts.

Furthermore, if only class " C " operation is desired, both NEC and Toshiba make 7-12 watt output hybrid modules for the $33-\mathrm{cm}$ band, which is, incidentally, a citizens' band in Japan. The NEC part number is MC-5843 and the Toshiba part number is S-AU11.

A suitable circuit using these modules is shown in fig. 12. These hybrid modules provide a power gain of approximately 30 dB and can be driven

to full output with 100-200 milliwatts of drive. They require a nominal supply of 12.5 volts at 2-3 Amperes of current and are great for portable operation.

high power

High-power amplifier designs are probably already available, but we have to seek them out. For moderate power ($25-200$ watts), the ubiquitous 2C39/7829 in a cavity is recom-

summary

This month's column was mainly focused on getting started on the new $33-\mathrm{cm}$ band. Easy-to-build and duplicate circuitry was discussed. Although the power level available from this is low, it should be more than adequate for DX from 50 to 250 miles (80 to 400 km) for band "warmer-upper's" and further if extended propagation conditions are present.

- Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial Accuracy $+/-1$ part per 10 million at all frequencies - Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - External FM input accepts tones or voice - Spurs and noise at least 60 dB below carrier - Output adjustable from $5-500 \mathrm{mV}$ at 500 hms - Operates on 12 Vdc@ $1 / 2$ Amp Available for immediate delivery • $\$ 429.95$ delivered - Add-on accessories available to extend freq range, add infinite resolution. AM , and a precision 120 dB attenuator - Call or write for details - Phone in your order for fast COD shipment.
- 159

VANGUARD LABS

196-23 Jamaica Ave., Hollis, NY 11423 Phone: (718) 468-2720 Mon. thru Thu.

- Exciting NEW learning experience lets the code RHYTHM build "unforgettable" shapes in your mind's eye
Sounds ADD to the shape you alraady. SEE so never change your mind about thes Shapes ARE the characters: urite thes'
- BEGINNERS: no "study" because: Only EIGHT shapes sive you HALF of EVERYTHING and nearly ALL the LETTERS. Know EVERYTHING: only 2 more endings each
- EXPERTS: braah your -learning plateau by letting shapes fors at "any" speed.
- CLUBS: 20\% diacount on 10 or sore sets.
- PRICE: Coaplete set TManual, Wall chart, Pocket card, Beginner's chartl: $\$ 11.50$ AINDS Manual alone tho discou
ele Minds eye Publications, Dept. H-1 P.O.Box 131C, Mclean VA 2210

"HAM HOTLINE"

THE PROVEN MONEYMAKER
The "Ham Hotline" is a complete mailing list of novice amateur radio operators and current hams who have renewed, upgraded or modified their FCC licenses. These ham enthusiasts have proven to be excellent prospects for radio equipment, accessories and publications.
The Hotline is UPDATED EVERY TWO WEEKS with an average of 8,000 names and addresses each month. And, because we know the Hotline is the most up-to-date amateur radio listing available. we'll guarantee 98% deliverability.

Target your sales efforts to your most likely buyers. Call DCC Data Service today and begin your subscription to the "Ham Hotline" . . . the proven moneymaker

- 161 DCC Data Service
1990 M Street, N.W. Suite 610
Washington, D.C. 20036
Toll-free 1-800-431-2577

In DC \& AK 202-452.1419

fig. 11. A recommended medium-power linear transmit amplifier. Gain is approximately 13 dB and maximum output power at 1 dB compression is approximately 300 milliwatts.

fig. 12. A recommended medium power class " C " amplifier circuit using commercial hybrids. Gain is approximately 30 dB and output is $7-12$ watts with 100 milliwatts drive. See text for suppliers. Be sure to provide adequate heat sink with several radiating fins. Under normal operation the heat sink will have to dissipate up to 25 watts of power.

The designs just discussed are more than adequate for transmitter drivers and basic receive converters. Improved designs and higher power transmitter designs should be forthcoming and can be easily substituted
or added on to the circuitry shown, especially if the modular approach is used.

Let's welcome our "newest" UHF band. It was only a few years ago that power levels above 10 watts were
uncommon on 23 cm , and we all know that great DX was worked there under good conditions. I'm sure the same DX is more probable on 33 cm . See you on 903.1 MHz!

references

1. Dave Newkirk, AK7M, 'Happenings - New Band at $902-928 \mathrm{MHz}^{\prime \prime}$, QST, October, 1985, page 51
2. Joe Reisert, W1JR, "VHF/UHF World: The VHF/UHF Primer - An Introduction to Propagation," ham radio, July, 1984, page 14
3. Joe Reisert, W1JR, "VHF/UHF World: Propagation Update," ham radio, July, 1985, page 86. 4. Joe Reisert, W1JR, "VHF/UHF World: Designing Reflector Antennas, Part 1", ham radio, February, 1986, page 51.
4. Joe Reisert, WiJR, "VHF/UHF World: Designing Reflector Antennas, Part 2," ham radio, March, 1986, page 68.
5. Joe Reisert, W1JR, "VHF/UHF World: Designing and Building Loop Yagis," ham radio, September, 1985, page 56.
6. Joe Reisert, W1JR, "VHF/UHF World: Transmission Lines," ham radio, October 1985, page 83. 8. Joe Reisert, W1JR, 'VHF/UHF World: VHF/UHF Exciters," ham radio, April, 1984, page 84.
7. Joe Reisert, W1JR, "VHF/UHF World: VHF/UHF Receivers," ham radio, March, 1984, page 42.
8. Joe Reisert, W1JR, "VHFIUHF World: High Dynamic Range Receivers," ham radio, November, 1984, page 97.
9. Joe Reisert, W1JR, "VHF/UHF World: The VHF/UHF Primer - An introduction to Filters," ham radio, August, 1984, page 112.
10. Bill Smith, KOCER, "The World Above 50 Mc . W6FZJ Wide-Band Low-Noise Preamplifier," $Q S T$, November, 1972, page 112.
11. Bob Sutherland, W6PO, "GaAs FET Preamps for 902 MHz and 1296 MHz ," EIMAC Amateur Sevice EME Note AS-49-36.
12. Joe Reisert, W1JR, 'VHF/UHF World: Low-Noise GaAs FET Technology," ham radio, December, 1984, page 99.
13. Joe Reisert, W1JR, "VHF/UHF World: High Power Amplifiers, Part $1^{\prime \prime}$, ham radio, January, 1985, page 97. 16. Joe Reisert, W1JR, 'VHF/UHF World: High Power Amplifiers, Part 2," ham radio, February, 1985, page 38.
14. Robert I. Sutherland, WGPO, and William I. Orr, W6SAI, "A High-Power Cavity Amplifier for the New 900 MHZ Band," OSS^{\prime}, November, 1982, page 14.

important VHF/UHF events:

April 14: ARRL $744-\mathrm{MHz}$ Sprint Contest April 19/20: REF IARU EME Contest
April 21: Predicted peak of Lyrids meteor shower at 1945 UTC
April 22: ARRL 220-MHz Sprint Contest
April 25: EME perigee
April 25-27: Dayton Hamvention
April 30: ARRL 432-MHz Sprint Contest
May 4: Predicted peak of the Eta Aquarids meteor shower at 1900 UTC
May 8: ARRL $1296-\mathrm{MHz}$ Sprint Contest
May 10/11: So. Calif. 6 Meter Club QSO Party (contact N6FSL)
May 16/18: 12th Annual Eastern VHF/UHF Conference, Nashua, NH (contact W1EJ)
May 17: ARRL 50-MHz Sprint Contest
May 24: EME perigee
ham radio

ham radio Reader Service

 $\begin{array}{llllllllllllllllllllllllll}107 & 119 & 131 & 143 & 155 & 167 & 179 & 191 & 203 & 215 & 227 & 239 & 251 & 263 & 275 & 287 & 299 & 311 & 323 & 335 & 347\end{array}$

 $\begin{array}{lllllllllllllllllllllllllllllllllll}110 & 122 & 134 & 146 & 158 & 170 & 182 & 194 & 206 & 218 & 230 & 242 & 254 & 266 & 278 & 290 & 302 & 314 & 326 & 338 & 350\end{array}$

$\begin{array}{llllllllllllllllllllllllll}112 & 124 & 136 & 148 & 160 & 172 & 184 & 196 & 208 & 220 & 232 & 244 & 256 & 268 & 280 & 292 & 304 & 316 & 328 & 340\end{array}$

Limit 15 inquiries per request.
NAME \qquad CALL

ADDRESS
CITY \qquad STATE \qquad ZIP

ham
 radio
 magazine

READER SERVICE CENTER
P.O. BOX 2558

WOBURN, MA 01888

ATTN: Reader Service Dept.

Measure Up With Coaxial Dynamics Model 85A Termination Wattmeter

A direct-reading instrument for servicing 50 ohm communication systems and maintaining them at peak operation.
The Model 85A features:

- Dry load no coolant required
- Replaceable connectors, interchangeable without affecting instrument calibration.
- Four power ranges easily switchable -0-3/15/50 and 150 watts full scale.
- Frequency Range: 20 to 512 MHz
- Accuracy: $\pm 5 \%$ OFS
- Temperature Compensated

Contact us for your nearest authorized Coaxial Dynamics representative or distributor in our world-wide sales network.

COAXIAL DYNAMICS, INC.

Service and Dependability... A Part of Every Product

For more than 4 years, QEX, THE ARRL Experimenters' Exchange has filled the gap between the experimenter's personal notebook and the content requirements of mass-circulation periodicals. QEX with its new look and expanded content should be even more appealing to those interested in expanding the technical frontiers of amateur radio. You are invited to watch the results of the metamorphosis of QEX when it goes from a newsletter to a minitechnical journal effective with the March issue! Use the order form to sign up to receive QEX each month. \square Renewal

NOW! Better than Ever Improved Graphics

QEX ORDER FORM ARRL - 225 MAIN STREET NEWINGTON, CT 06111 USA

For 12 issues of QEX in the U.S.

- ARRL Member $\$ 600$ ㅁ Non-Member $\$ 12.00$ In Canada, Mexico, and U.S. by First Class Mail \square ARRL Member $\$ 11.00 \square$ Non-Member $\$ 17.00$ Elsewhere by Airmail
\square ARRL Member $\$ 21.00 \square$ Non-Member $\$ 27.00$
Remittance must be in U.S. funds and checks must be drawn on a bank in the U.S. Prices subject to change without notice. Or charge my: () VISA () Mastercard () Am. Express Signature
Acct. No.
Good from \qquad Expires
Name
Address

RF TRANSISTORS

FRESH STOCK - NOT SURPLUS TESTED - FULL Y GUARANTEED

$\left.2.30 \mathrm{MHz} 12 \mathrm{~V} \mathrm{~F}^{*}=28 \mathrm{~V}\right)$			
P/N	Rating	Each	Match Pr.
MRF406	20W	\$14.50	\$32.00
MRF412,/A	80W	18.00	45.00
MRF421	100W	25.00	56.00
MRF421C	110W	-	60.00
MRF422*	150W	38.00	82.00
MRF426,/A*	25W	18.00	42.00
MRF428**	150W	55.00	125.00
MRF433	12.5W	12.00	30.00
MRF435*	150W	42.00)	90.00
MRF449,/A	30W	12.50	30.00
MRF450, /A	50W	14.00	31.00
MRF453,/A	60W	15.00	35.00
MRF454,/A	80W	16.00	36.00
MRF455, /A	60W	12.00	28.00
MRF458	80W	20.00	46.00
MRF460	60W	18.00	42.00
MRF464*	80W	25.00	60.00
MRF466*	40W	18.75	48.00
MRF475	12W	3.00	9.00
MRF476	3W	2.75	8.00
MRF477	40W	11.00	25.00
MRF479	15W	10.00	23.00
MRF485*	15W	6.00	15.00
MRF492	90W	18.00	40.00
SRF2072	75W	15.00	33.00
SRF3662	110W	28.00	60.00
SRF3775	75W	15.50	34.00
SRF3795	85W	16.50	37.00
CD2545	50W	23.00	52.00
SD1076	70W	17.00	40.00
SD1451	50W	15.00	36.00

Selected High Gain Matched Quads Available
VHFIUHFTRANSISTOR
Rating MHz Net E

MRF212	10 W	$136-174$	$\$ 16.00$	
MRF221	15 W	136.174	10.00	
MRF222	25 W	$136-174$	14.00	
MRF224	40 W	$136-174$	13.50	32.
MRF231	3.5 W	$66-88$	10.00	

$\begin{array}{llll}\text { MRF231 } & 3.5 \mathrm{~W} & 66-88 & 10.00 \\ \text { MRF234 } & 25 \mathrm{~W} & 66-88 & 15.00\end{array}$
MRF237
.00
MRF238
MRF240
MRF245
MRF247
MRF250
MRF260
$\begin{array}{lrr}\text { MRF261 } & 5 \mathrm{~W} & 136-174 \\ \text { MRF262 } & 10 \mathrm{~W} & 136-174\end{array}$
MRF262
MRF264
MRF607
MRF641
MRF644
MRF646
MRF648
2N3866
2N4427
2N5591
2N5642*
2N5945
2N5946
2N6080
2N6081
2N6083
2N6084
MRF134*
MRF137*
MRF138.. 30W
MRF138** 30W
MRF150**
$\begin{array}{lrrr}\text { MRF150** } & \text { 150W } & 1.5 \cdot 150 & 35.00 \\ \text { MRF172* } & 80 & 2.200 & 65.00\end{array}$
Selected, matched finals for Kenwood, Yaesu Icom, Atlas, etc. Technical assistance and cross. reference information on CD, PT, RF, SRF, SD P/NS
QUANTITY DISCOUNTS AVAILABLE WE SHIP SAME DAY C.O.D./VISA/MC INFORMATION AND CALIF: ORDERS: (619) 744-0728 OUTSIDE CALIF. ORDER DESK: 800-854-1927

HAM RADIO APRIL SHOWERS BOOK FLYER SOFTWARE-

RF NOTES - IBM-PC
by John Simmons, W6MDI
Here's an easy way to get answers for often asked electronics questions. Volumes contain programs written by RF consulting engineers that answer a number of very important questions often asked by Hams. Monochrome and color versions available. Written in Basic A and fully menu driven. Graphics card and 128 K memory required

Volume 1

Contains: $d B$ conversions, to convert voltage, current or power levels to dB ; $d B \mathrm{~m}$ conversions, converts voltages of power levels to dBm and dBm to voltage or power; VSWR calculations, calculates VSWR and return loss when both reflected and incident powers are known; Filter design. 14 different filter configurations including schematics (6 low pass, 4 high pass, 2 band pass and 2 band elimination cif cuits: Basic Microstrip and strip line design. Resonant Circuits, design parallel and series resonant circuits, pi, capacitive and inductive impedance divider circuits. E-RF1 (Monochrome) IBM-PC $\$ 59.95$ E-RF1C (Color)

Volume II

This program covers: Attenuator pads, calculates constants lor eleven different pad configurations (all with circuit dia grams.) Inductors, inductance in a single length of wire, single layer coils, both close and wide space wound and Torroidal coil design that gives automatic selection of wire size and torroidal form. Capacitors, calculates self resonant frequencies, determines optimum bypass values and de coupling applications. Impedance Matching Networks. including. L, pi, T and series L configurations.
E-RF2 (Monochrome) IBM-PC
$\$ 59.95$
E-RF2C (Color)
$\$ 59.95$

Volume III

BRAND NEW

Contains: 4 programs that cover, low pass, high pass band pass, and band reject Butterworth filters (calculates circuit constants for Butterworth filters through the 7th order.) Programs include graphical response curves and all outputs are in schematic diagram form The schematic out puts and associated circuit constants are determined on the basis of user inputs including source and load resistance
E-RF3 (Monochrome) IBM.PC
E-RF3C (Color)

$\$ 84.95$
 $\$ 84.95$

RF-CAD ELECTRONICS DESIGN PROGRAM Version 3.51

by Joe Reisert, W1JR and Gary

Field, WA1GRC

For IBM PC and compatable computers
This software package has been written by electronic engineers and contains nearly 40 tested and proven pro grams that will help the Radio Amateur or engineer design many common types of radio circuitry Emphasis has been placed upon ease of use. Wherever possible, menus of choices with examples are displayed. Should the user be computer literate, the programs are not copy protected so they can be modified to meet your specific requirements. (full documentation is also provided.) Programs include. Filters, LC, active- LP, HP, BP; Inductor design, torroid. solenoid, straight wire, Matching networks; Crystal oscillators: Microstrip: Transmission lines; Antennas, Yagi-Uda, helix, dish, horn, element scaling: Pi and T attenuators. Also included: Radio Path calculations; FM modulation analysis. Miscellaneous conversions. Geostationary satellite pointing; Moon tracking aids; Receiver noise figure calcula rions and Spunous receiver response prediction. Requires IBM-PC with at least one floppy drive and 128 k of RAM 1985.

RF-CAD
STAR 1.0

DESIGN PROGRAM TWO NEW VERSIONS by Randall Rhea by Randall Rhea

STAR. S-parameter Two part Analysis Routine, is a professional engineering program designed to help analyze electronic circuits. It is particularly helptul in frequency domain analysis of RF and microwave circuits. To use STAR, you input circuit information by component; inductors, resistors, capacitors, transformers, transmission lines, two port data and several two port manipulations. STAR will then give you S-parameter data for each requested trequency in tabular or plot form. You can also use STAR to optimize component values for maximum circuit performance. This program is definitely not for electronic beginners. Engineers and senious hams, however, will find STAR to be an invaluable design tool

RR-IBM program for IBM (PC, XT, AT.JR)
RR-C-64 program for Commodore C-64 $\$ 99$
RR-AP program for Apple II
RR-KP program for KayPro
RR-MAC program for Macintosh
RR-PC program for IBM.PC
 889
with 8087 floating coprocessor only

PACKET RADIO THRU SOFTWARE

AX. 25 Protocol
You can get on Packet Radio two ways. One is with a sophisticated "black box." The other is by making your computer act like a "black box" by programming it in a high level machine language code. W4UCH has written a machine language program for the Radio Shack TRS-80 Models 1.3 and 4 computer (Model 4 works with Model 3 disk while in Model 3 mode). This book has twelve chapters plus seven appendices that take you step by step through the process of setting your computer to first convert the digital information into a useable format and then to decode the information. 1984, 3rd edition.
RE-AX
Softbound \$21.95
RE-MI Model 1 Disk
$\$ 29.00$
No Documentation included $\$ 29.00$
RE-MIII Model III \& 4 Disk
No Documentation included
$\$ 49.95$
(Specity disk. Mod I or Mod III)

CODEPRAC. COM for IBM.PC

here 5 a really ditferent code practice program tor your IBM.PC. or compatible computer. It produces machine perfect code from 5 to 60 WPM using any ASCII file from your word processor. LOTUS. whatever you already have Perfect for clutis. VE's and students.
EB-CC IBM or compatible

BOOKS

LADPAC

by Wes Hayward, W7ZOI

LADPAC has been written to help the sophisticated Radio Amateur or electronic engineer design and analyze electronic LADDER circuits. LADPAC consists of five menu driven, interactive programs, general purpose ladder analysis, low/high and bandpass design, coupled resonator LC litters, lower sideband ladder crystal filters, and a schematic drawing routine LADPAC will help you calculate network gain, phase, group delay and return loss. generate either graphic or tabular data output, use Smith chart graphics: optimize mult-element tuning, plus much more LADPAC requires IBM.PC (DOS 2.0) and color graphics card. A dot matrix printer is highly recommended. Also available LADPAC designed to run with the 8087 co processor for taster operation 256 K memory LADPAC program for IBM.PC
LADPAC-87 program for IBM.PC 8087 inst.

COMPUTERIZED DX EDGE ${ }^{S A L E}$ SPECIAL Generate your OWn Greyline display.

Xantek has adapted their best selling DX Edge to the computer world and it comes at a very reasonable price. This computerized operating aid brings into your ham shack the ability to know and predict when and where DX is going to appear. When you are using the program, the computer will automatically update the information as the sun progresses across the tace of the Earth. To make the computerized DX Edge even easier to use, the display is keyed to the DXCC list and the 40 CO zones. Disk and documentation included This is something you've G ot to have! 1985
XN-C64 (For Commodore C-64) $\$ 27.95$

MICRO COOKBOOK Vol. 1 and 2

by Don Lancaster

Learning to use a PC can be a real challenge. However. Don Lancaster has tried to filter out all the gobbledygook and make it as easy as can be. Volume 1 features down-to-earth coverage of fundamentals, number systems, hardware and software logic, mainstream codes and standards. electronic memory and memory devices and other applications. Volume 2 covers address space, addressing. system architecture, machine code programming, $1 / 0$ and helptul suggestions to common problems.
$\square 21828$ Volume 1 © 1982
$\$ 15.95$
21829 Volume 2 (91983 $\mathbf{\$ 1 5 . 9 5}$
Buy BOTH Special
SAVE $\$ 4.95$
$\$ 26.95$

CMOS COOKBOOK by Don Lancaster

CMOS is today's state-0f-the-art! It's low cost. widely available and uses an absolute minimum of power It's also fun to work with and very easy to use. The CMOS Cookbook is written to help you use CMOS and is chock-full of practical circuits and does not dwell on math or heavy theory Projects include high performance op-amps. TV typewriter, digital instruments, music synthesizers, video games and more 1977, 1st edition, 414 pages.
21398
Softbound $\$ 13.95$
IC OP AMP COOKBOOK by Walter Jung
This second edition is broadly updated in terms of device coverage. It includes the latest in state-of-theart developments such as J Fet and MosFet in both single and multiple formats. This cookbook is edited into three basic parts. Part I introduces the IC op amp and discusses general considerations. Part II covers practical circuit applications. Part III is an appendix consisting of manufacturer's data sheets and other pertinent information. You'll find a wealth of information, as well as over 200 practical circuit applications. 1980. 2nd edition, 480 pages. 21695

Softbound $\$ 15.95$
TTL COOKBOOK by Don Lancaster
Despite the advent of CMOS, there is still design work being done with TTL circuitry This book gives you a broad overview of exactly what TIL is, how it works and is full of design ideas and practical circuits. Areas that receive attention include. tip-tlops, clocked logic. counters, counting techniques, noise genera tors and much more. You aiso get a complete discussion of practical ITL applications including digital counter, events counter, stopwatch and voltmeter to name just a few 1901974. 1st edition, 333 pages. 21035

Softbound \$12.95

SPECIAL SALE - SAVE \$5 EACH Have a name - but need the Call Sign? Traveling - and want to meet local Hams?

REPAIR AND TROUBLESHOOTING GUIDES
 C-64, IBM-PC AND APPLE II

by Robert C. Brenner
If you've been taking care of your ham gear, there's certainly no reason why you can't do much of your own microcomputer servicing. These handy guides give you a real headstart in taking on your "micro" when problems arise. Troubleshooting is clearly illustrated by simple flow arise. Troubieshooting is clearly illustrated by simple flow them. There is also an Advanced Troubleshooting chapter them. There is also an Advanced Troubleshooting chapter
for more complicated systems failures. Clear easy-to-read lor more complicated systems
122363 Commodore C-64 ©1985 $\mathbf{\$ 1 8 . 9 5}$
22353 Apple II Plus/lle © 1984 \$19.95 122358 IBM-PC © 1985 \$18.95
$\$ 18.95$

1985:1986 Amateur Rado 25. 1986 Amateur Radio \quad No frills directories of over 462,000 U.S.

Radio Amateurs. $81 / 2 \times 11$, easy to read format.
NAME INDEX-\$25.00 \$19.95
GEOGRAPHICAL INDEX-\$25.00 $\$ 19.95$

GEOGRAPHICAL NDEX
By State. Ciy. Street No and Call 653 pages
\$35.95

From Texas Instruments UNDERSTANDING SERIES ${ }^{\text {TM }}$

UNDERSTANDING MICROPROCESSORS

By Don L. Cannon and Gerald Luecke
How microprocessors work and what they can do is something that you need to know This text starts with an over view of the world of digital electronics and covers the basic concepts of microprocessor systems, how digital ICs provide systems functions, fundamentals of microprocessors, system application with SAM (simplified architecture microprocessor), programming basics and 8 and 16 bit microprocessor applications. Written in an easy-to-read microprocessor applications, Written in an easy-to-read
style with plenty of "hands on" projects. (c) 1984 Second style with plenty of
Edition 288 pages.
\square TI-MP
Softbound \$14.95
UNDERSTANDING DIGITAL ELECTRONICS
By Gene McWhorter
This book tells you all you need to know to understand the basics of digital electronics. You start with a look at how digitar electronics systems work and progress through AND, OR. NOT, NAND and NOR gates. You then learn decision making, logic and memory fundamentals. Digital mass storage is explained with information on static, dynamic, RAM and ROM systems. There is much more to this book than can be explained in this short description. You'll have to pet one to see how complete it is. © 1984 2nd Edition. TI-UDE

Softbound $\$ 14.95$
UNDERSTANDING DATA COMMUNICATIONS (Includes Packet Information)
By G. Friend, J.L. Fike, H.C. Baker and J.C. Bellamy This book covers the basic concepts of data transmission and reception, asynchronous and synchronous protocols. error control and networking data communications systems. Data terminals are fully discussed as are message and transmission terminals, modems and interfaces, fiber optics and satelite communications systems. Packet Networks and standards are covered with information on $\times 2.5$ switching architecture. You also get the recommended X Series standards. A wealth of information. (9) 1984 ist edition 272 pages.
1 TI-UDC
Sottbound $\$ 14.95$

BASEBALL CAP

How about an attractive BASEBALL style cap
that has name and call on it. It gives a
jaunty air when worn at Hamtests and it is a great help for friends who have never met to spot names and calls for easy recognition. Great for birthdays, anniver saries, special days, whatever occasion Hats come in the following colors: GOLD, BLUE, RED, KELIY GREEN Please send call and name (maximum 6 letters per line).
DUFBC-81
$\$ 6.00$

I.D. BADGES

No ham should be without an I.D. badge. It's just
 the thing for club meetings, conventions, and get togethers, and you have a wide choice of colors Have your name and call engraved in either standard or script type on one of these plastic laminated I.D. badges. Available in the following color combinations (badge/lettering): white/red, woodgrain/white, blue/ white, white/black. yellow/blue, red/white, green white, metallic goid/black, metallic silver/black. UID Engraved ID Badge

UNDERSTANDING COMMUNICATIONS SYSTEMS

By Don L. Cannon and Gerald Luecke Here's a book that will answer just about any question you have ever had about communications systems. Written in a tutorial style, this book covers basic communications con cepts, conversion functions, system techniques, applica tions and more in 10 complete easy-to-read chapters. The tollowing transmission methods are discussed, AM. FM PCM, PDM, TDM, TV and Facsimile. Satellite systems are covered in detail Great text for newcomers to Ham Radio 1984 2nd edition 288 pages
\square THUCS
Softhound $\$ 14.95$

UNDERSTANDING DIGITAL

TROUBLESHOOTING
By Don L. Cannon
This book has been written to explain the mysteries of repairing digital electronic circuits. Starting with fundamentals like binary/hexidecimal conversions and Ohm's Law, this text progresses thru the most esoteric aspects of digital repair in a logical step-by-step manner. The chapter on troubleshooting fundamentals starts with a review of the most common problems that will be encountered such as opens and shorts and concludes with signal tracing techniques. You also get a full explanation of how to use logic probes and clips. 2nd Edition wi. 1984272 pages
\square TI-UDT
Softbound \$14.95

Buy all 5 books

Reg. $\$ 74.75$

Special \$69.95 Save

CONFIDENTIAL FREQUENCY LIST

 NEW 6th Revised EDITION now includes RTTY stations
by 0. P. Ferrel

SWL's around the world know that this is the best ret erence book to have around. This brand new edition is jam-packed with all the latest trequencies, calligigns and other important information. Inside you'll tind listings for aeronautical, military, embassy. VOLMET. INTERPOL. weather and RTIY stations. Also included is a thorough discussion on how to listen to RTTY stations, explanations of the abbreviations used by utility stations, the reasons behind international jamming and much, much more. Every radio enthusiast should have a copy in their shack
1986. Revised 6th edition, 336 pages

GL-CF
Softbound $\$ 15.95$

ARRL COMPUTER NETWORKING

CONFERENCES $1-4$

Pioneer Papers on Packet Radio 1981-1985
The handiook for Packet Users!il!
This collection of Packet Radio papers should be in every Packet enthusiasts shack! Written during the formulative years of Packet development, these papers (too numerous to mention them all) cover: theory, practical applications, protocols, software and hardware subjects. You also get a complete up-to-date collection of all published "Gateway" the ARRL Packet Radio newsletter. As big as the ARRL HANDBOOK, this new book is sure to be the ARRL's next best seller! © 1985 over 1000 pages.
IAR-CNC

SOFTWARE FOR AMATEUR RADIO

by Joe Kasser, G3zCz

Packed with practical computer applications and tested and debugged programs that can be adapted simply and easily to almost any microcomputer. You get BASIC programming concepts as well as how to interface your comuter to your radio. Programs include: digital communications RTTY
Packet, computer aided design and circuit analysis as well as data base programs for record keeping, logging, and awards. Easy-to-understand explanation of Baudot and ASCII codes and quidance on hardware dependent software 1984 1st printing 284 pages.
T-1560
Softbound $\$ 15.95$

THE COMPLETE DX'ER

by Bob Locher, W9KNI

DX'ing can be as simple as turning the radio on and searching across a band, or it can be hours spent studying propagation reports, sunspot figures and the DX newsiet ters looking for tidbits of information. The first part of the book is designed to teach the reader DX'ing fundamentals. Part two is for the "over 200 countries worked" operator and has plenty of handy tips, aids and ideas. Part three is full of more esoteric hints for the "over 300 countries worked" operator. This book tells all and should be required reading before anyone starts their quest for DXCC Even it you don't care about DXCC. Bob's easy-to-read style of writing is most enjoyable reading. 1984. 1st edition
ID-DX
Softbound $\mathbf{\$ 1 0 . 9 5}$

ANTENNA COMPENDIUM

edited by ARRL Statf

This book has more than 20 antenna articles that have never been published betore. Subjects covered include Quads, Yagis, Phased Arrays, Log Periodics, Subsurface Antennas "The Old Spruce Antenna", as well as discus sions on Smith Charts, antenna design, the G5RV multiband antenna and antenna polanzation Great summer read ing and full of ideas for Fall '85 antenna projects. 1985. 1st Edition
AR-AC
Soltbound $\$ 9.95$
THE AMATEUR RADIO VERTICAL HANDBOOK
by Cpt. Paul H. Lee, USN (Ret.), N6PL
This is the only book dedicated to the vertical antenna and will be of interest to all those using or looking to use the vertical design. Based upon the author's years of work with a number of different vertical antenna designs, you'll get plenty of theory and design information along with a number of practical construction ideas Included are designs for simple $1 / 4$ and $5 / 8$-wave antennas as well as broadband and multi-element directional antennas Paul Lee is an engineer and avid ham and is Amateur Radio's resident expert on the vertical antenna. ic:1984, 2nd edition CO-VAH Softbound $\$ 9.95$
DX POWER: EFFECTIVE TECHNIQUES FOR RADIO AMATEURS
by Chip Tilton, K5RSG
co-Published by ARRL and TAB Books
It you're a new DX'er, how do you learn all the "ropes" of successful operation? Eithor you have a special Elmer or you get Chip's new bookt. This fact filled guide to DX'ing is chock full of advice, tips, hints and the tricks that will put you on the coveted DXCC. Honor roll It's also an insider's view to all the funny, frustrating and tricky maneuvers used by DX'ers around the world. Each band is covered as well as a discussion of equipment, accessories and antennas for your station. Also includes info on QSL'ing. ARRL awards and other helpful information. 1986 1st Edition. 244 pages.
IT-1740

ORDER FORM
SAVE TIME. USE YOUR CHARGE CARD AND ORDER BY PHONE
(603) 878-1441 8:00-4:00

Catalog " Title	QTY	Price	Total	

Heswum ELEGTRONIC TEST GEAR

NEW 35 MHz DUAL TRACE OSCILLOSCOPE

A heavy duly and accurate scope for service as well as production use. Features include - wide irequency bandwidth optimar sensitivity - extremely bright display * delayed riggering sweep - hold ofl - ALT Irigger single sweep - TV sync - 5X magnitication - XY or XYZ operation - HF/LF noise reduction
3500 Dual Trace Oscilloscope
$\$ 49995$
ncludeses 2 high
auality probes

ALL OSCILLOSCOPES INCLUDE 2 PROBES

NEW 15 MHz DUAL TRACE PORTABLE OSCILLOSCOPE

MINI-100 FREQUENCY COUNTER
compact - high sensitivaty * low ourrent drain - vory accurate ading zero Dlanking - tield or shop use * 1 MHz to 500 MHz
$995 \begin{aligned} & \text { Battery chapger nicad batteries } \\ & \text { AND ac adapter included }\end{aligned}$

CT-70 7 DIGIT 525 MHz
COUNTER

3 trequency ranges each with pre amp - dual dual selectable gate times \bullet gate activity indicator SomV

54095

CT-70 kit
BP-4 nicad pack

CT-50 8 DIGIT 600 MHz COUNTER

$$
\$ 16995
$$

CT-90 9 DIGIT 600 MHz COUNTER
The most versatie lor less than $\$ 300$ Features 3 selectable gate times * 9 digis * gate indicato:
$*$ display frold $* 25 \mathrm{mV}$ (9) 150 MHz typical sen thisity * 10 MHz timenase for WWV calibration
$\$ 14995$
wired include
AC adapter
$\mathrm{CI}-90 \mathrm{kit}$
OV .101 PPM oven tumebase
5129.95
59.95
8.95

CT-125 9. DIGIT 1.2 GHz COUNTER
$\$ 16995 \begin{gathered}\text { wired includes } \\ \text { Adapter }\end{gathered}$
58.95

FM. 3 Kit
FM. 3 Wred and Tested $\begin{gathered}514.95 \\ 19.95\end{gathered}$

30 Watt 2 mtr PWR AMP
Simple Class C power amp features 8 times power gain, in for 6 out, 2 W in for 15 out, 4 W in for 30 out Max output
of 35 W . incredible value, complete with all parts. Iess case and T-R relay
\$2295
695

Power Supply Kit
supply provides variable 61018 volts supply provides vatiable 6 to 18 volts
at 200 ma and -5 at \mid Amp Excelient toad regulation, good filtering a requires 63 V (a 1 A and
24 VCT Complete kit. PS-3LT $\mathbf{\$ 9 5}$

YISA
PHONE ORDERS BALL
716-586-3950
TELEX 466735 RAMSEY CI

TERMS: • satishaction guaranteed • examine for lo days: il not pleased, return in original torm for refund • add 6% tor shipping and insurance 10 a maximum of $\$ 10.00$ - overseas add 15% Hor surface mail - COO add $\$ 2.50$ (COD in USA only) - orders under $\$ 15.00$ add $\$ 1.50$ - NY residents add 7\% sales tax - 90 day parts warranty on all kits - I year parts \& labor warranty on all wired units.

DX FORECASTER

Garth Stonehocker, K0RYW

1985 review

Six months have passed since our last review of propagation conditions; now that data for 1985 is complete, it's time for a review of the year as a whole.

The sunspot numbers (SSN) during the first four months of 1985 were just under 20, increasing through July to 35 and diminishing during the final months of the year to 13 . This represented a decrease, over the year, of 7 SSNs, or approximately 0.5 SSN per month. If this trend continues, we could expect a low of about 6 SSNs by late fall of 1986. Although new 11-year cycle SSN sunspots were tentatively identified from polarization differences on September 11, no opposite polarity spots at high latitudes have yet been seen. The cycle 21 SSN minimum may occur in September, 1986.

An equivalent pattern emerged in review of the 10 cm solar flux data. Monthly solar flux numbers in early 1985 matched those of late 1984 at 74 ± 2 units. A mid-year bulge of up to 80 occurred instead of the minimum number expected; a minimum of 69.5 occurred in September. The year closed with a 75 again. Note that the minimum monthly average in October, 1984, was 73.5 ; in 1985, it was 69.5, which represents a decrease of four units. A continued reduction to 67 units in a late summer month of 1986 will be necessary for the solar flux minimum to be reached.

The lowest daily solar flux value in the 11-year cycle so far, 66, occurred on August 17 and from October 6 through the 9th. The highest value during 1985 was 101, on July 9. (The daily flux number will probably reach

63 or 64 by next fall.) The 27 -day solar flux variation of daily numbers, whose increase raise the monthly average, was 20 units or more in January, in the period between April and July (with May the highest solar flux, at 80.3), and in the month of October; a variation of about 10 units occurred in February, March,, August, November, and December. September was quite "flat," devoid of any 27-day solar cycle activity, and therefore provided the minimum monthly average of the year. Four days of a solar flux of 66 were the year's minimum recorded just before solar activity began to increase again in mid-October.

The geomagnetic A figure monthly average was, as usual, highest in April, the most disturbed month, and May, the quietest. Note the May inverse relationship to solar flux, a surprisingly frequent occurrence. Of the disturbed periods, April 20 to May 2 stands out as the highest and longest. The other months had two or three milder periods of disturbance separated by a few days of quiet conditions. That's the difference between the geomagnetic conditions in the winter minimum months and those of the equinox maximum and summer months: the number of big events decreases and the number of quiet days (at a lower A level) increases. As SSN minimum approaches this summer, the periods of solar 27-day activity should get further apart and be lower in intensity. The periods of geomagnetic disturbance should also decrease in number and intensity. The sun simply takes a rest - Hi!

You may recall from my December, 1985, column on maximum usable frequencies (MUF) that an increase of
one unit in solar flux results in an increase in MUF of 1 percent. The base line to start from for mid-latitude MUFs is $M U F=2.5$ (0.036 SSN + 5.28). The decrease in MUF from a geomagnetic disturbance is percentage MUF $=0.375 A+3.75$. Listen to WWV at 18 minutes after the hour for the data.

last-minute forecast

The first two weeks of April are expected to have low solar flux levels. Because the amplitude variation isn't more than a few units during this part of the 11-year sunspot cycle, the lower frequency bands are expected to provide the best $D X$ activity. The geomagnetic field should still be a problem this close to equinox, so look for disturbances around the 4th to the 8th, from the 18th to the 22nd, and again on the 28th of the month. Signal level variations will be greatest during these periods and conditions won't be really stable in between, either, since equinoctial periods don't produce many quiet days. The best days for the higher frequency band DX are more likely to occur from the end of the second week through the third. Expect some enhanced equatorial openings during the disturbances of the 21st.

The perigee of the moon's orbit (for moonbounce $D X$) is on the 25 th, with the moon showing full phase on the 1st. There will be a short meteor shower, the Lyrid, on April 20-22, with a rate of five per hour - hardly much help for meteor-scatter DX. But a bigger shower, the Aquarid, starts before the end of April, peaks on May 5, and ends in mid-May. Its rate is 10 to 30 per hour.

band-by-band summary

Ten, twelve, fifteen, and twenty meters will be open from morning until early evening almost every day, and to most areas of the world. The openings on the higher of these bands will be shorter to the southern hemisphere and will occur closer to local noon. Transequatorial propagation on these bands will more likely occur toward evening during conditions of highest

HF Equipment IC-735 HF transceiver/SW revi/mic PS-55 External power supply. AT-150 Automatic antenna tunet ... $\mathrm{FL}-32500 \mathrm{~Hz}$ CW filter. EX-243 Electronic keyer unit \qquad	
IC-745 9-band xcvr w/1-30 MHz revr	Icvr 999.00
PS-35 Internal power supply	160.00
EX-241 Marker unit.	20.00
EX-242 FM unit.	39.00
EX-243 Electronic keyer unit	50.00
$\mathrm{FL}-45500 \mathrm{HzCW}$ filter (1st IF)	59.50
$\mathrm{FL}-54270 \mathrm{~Hz} \mathrm{CW}$ filter (1st IF)	47.50
FL-52A 500 Hz CW filter (2nd IF)	(F) 96.5080^{895}
FL-53A 250 Hz CW filter (2nd IF)	IF) 96.500^{8995}
FL-44A SSB filter (2nd IF)	159.00144^{45}
HM-10 Scanning mobile microphone	one 39.50
SM-6 Desk microphone............	... 39.00
HM-12 Extra hand microp	
MB-12 Mobile moun	19.50
919.band xcvr/1.30 MHz	
35 Internal power supp	60
FL-32 500 Hz CW filter (1st If)	59.50
$\mathrm{FL}-63250 \mathrm{~Hz}$ CW filter (lst IF)	48.50
FL-52A 500 Hz CW filter (2nd IF).	96.500^{8993}
FL-53A 250 Hz CW filter (2nd IF)	96.50
FL-33 AM filter.	31.50
FL-70 2.8 kHz wide SSB filter	46.50
HM-12 Extra hand microphone.	39.50
SM-6 Desk microphone.	
RC-10 External frequency controller	ler 35.00
MB-18 Mobile mount. 19.50
IC-720A 9 -band xcvr - (CLOSEOUT) - 1	- 1349.
PS-15 20A external power supply	ly 149.00
FL-32 $500 \mathrm{~Hz} \mathrm{CW} \mathrm{filter} \mathrm{...........}$.	.. 59.50
FL-34 5.2 kHz AM filter	49.50
BC-10A Memory back-up	8.50
SM-5 8-pin electret desk mic	39.00
MB-5 Mobile mount 19.50
Other Accessories:	Regular SALt
PS-15 20A external power supply	$149.00134{ }^{35}$
CF-1 Cooling fan for PS-15	45.00
EX-144 Adaptôr for CF-1/PS-15.	
PS-30 Systems p/s w/cord. 6-pin plug	plug $259.95234 \times$
OPC 0pt. cord, specity 2, 4 or 6-pin	pin 5.50
SP-3 External base station speaker....	... 49.50
SP-5 Remote speaker for mobiles.	25.00
CR-64 High stab. ref. xtal (745/751)	51) 56.00
PP-1 Speaker/patch (specity radio) 139.00129^{93}
SM-8 Desk mic - two cables, Scan...	69.95
SM-10 Compressot/graph EQ. 8 pin mic	mic 119.00
AT-100 100W 8 -band auto antenna tunet	net 349.00314^{45}
AT-500 500W 9-band auto antenna tuner	net 449.00 39995
AH-1 5 -band mobile antenna w/tuner	ner $289.00259^{\text {s5 }}$

CD ICOM

Other Accessories cont
Regular SALE
AH-2 8-band tuner w/mount \& whip 549.00 GC-4 World clock - (CLOSEOUT) HF linear amplifier \qquad IC-2KL $160-15 \mathrm{~m}$ solid state amp w/ps 6-meter VHF Portable IC-505 3/10W 6 m SSB/CW portable BP-10 Internal Nicad battery pack BP-15 AC charger
EX-248 FM unit
LC-10 Leather case
VHF/UHF base multi-modes IC-551D 80W 6-meter SSB/CW EX-106 FM option
BC-10A Memory back-up. SM-2 Electret desk microphone IC-271A 25W 2 m FM/SSB/CW AG-20 Internal preamplifier* IC-271H 100W 2 m FM/SSB/CW AG-25 Mast mounted preamplifier* IC-471A 25W $430-450$ SSB/CW/FM xcvr AG-1 Mast mounted preamplifier* IC-471H 75W 430-450 SSB/CW/FM AG-35 Mast mounted preamplifier ${ }^{*}$
Limiter Offer! - Matching preamp* only \$100 extra with purchase of IC-271A/H or IC-471A/H.

Accessories common to 271A/H

PS-25 Internal power supply for (A) PS-35 Internal power supply for (H) PS-15 External power supply
SM-6 Desk microphone
EX-310 Voice synthesizer
TS-32 CommSpec encode/decoder
UT-15 Encoder/decoder interface
UT-15S UT-15S w/TS-32 installed.
VHF/UHF mobile multi-modes IC-290H 25 W 2 m SSB/FM, TTP mic. IC-490A $10 \mathrm{~W} 430-440$ SSB/FM/CW
VHF/UHF/1.2 GHz FM IC-27A Compact 25W 2 mFM w/TTP mic IC-27H Compact 45W 2 mFM w/TTP mic IC-37A Compact 25W 220 FM, ITP mic IC-47A Compact 25W 440 FM, TTP mic
PS-45 Compact 8A power supply UT-16/EX-388 Voice synthesizer SP-10 Slim-line external speaker IC-3200A $25 \mathrm{~W} 2 \mathrm{~m} / 440 \mathrm{FM} \mathrm{w} / \mathrm{TTP}$. UT-23 Voice synthesizer AH-32 $2 \mathrm{~m} / 440$ Dual Band antenna Larsen PO-K Roof mount Larsen PO-TLM Trunk-lip mount Larsen PO-MM Magnetic mount IC-1271A 10W 12 GHz SSB/CW Base 999.00889^{95} ATV-1200 ATV interface unit PS-25 Internal power supply EX-310 Voice synthesizer UT-15S CTCSS encoder/decoder IC-120 IW 1.2 GHz FM Mobile. ML-12 $\quad 1.2 \mathrm{GHz} \quad 10 \mathrm{~W}$ amplifier

Repeaters

Regular SALE RP. 3010440 MHz , 10 W FM, xtal cont. $999.00899{ }^{95}$ RP-1210 $1.2 \mathrm{GHz}, 10 \mathrm{~W}$ FM, 99 ch. synth 1199.001089 Duplexer 12101.2 GHz duplexer.
Cabinet for RP-1210
 Use your Credit Card!
Hand-held Transceivers Deluxe models Regular SALE IC-02AT for $2 \mathrm{~m}349 .0028995$ IC-04AT for 440 MHz 379.0031995 Standard models Regular SALE IC-2A for $2 \mathrm{~m} . \ldots239 .5018945$ IC-2AT with TTP....... 269.50 199ss
IC-3AT 220 MHz , TTP 299.95 23995
IC-4AT 440 MHz , TIP $299.95239{ }^{95}$
Accessories for Deluxe models Regular
BP-7 425mah/13.2V Nicad Pak - use BC-35 67.50 BP- $8800 \mathrm{mah} / 8.4 \mathrm{~V}$ Nicad Pak - use BC-35 ... 62.50 BC-35 Drop in desk charger for all batteries 69.00 BC-60 6-position gang charger, all batts SALE 359.95
BC-16U Wall charger for BP7/BP8............... 10.00
LC-11 Vinyl case
LC-14 Vinyl case for Dix using BP-7/8
C-02AT Leather
839.95

Accessories for both models
39.50

BP-3 Extra Std. 250 mah/8.4V Nicad Pak.... 29.50
BP-4 Alkaline battery case
BP-5 425mah/10.8V Nicad Pak - use BC35 CA-2 Telescoping 2 m antenna.
CA-5 5
A. 5 -wave lelescoping $2 m$ antenna

CP-1 Cig. lighter plug/cord for BP3 or Dix
DC-1 DC operation pak for standard models 17.50 LC-2AT Leather case for standard models.
RB-1 Vinyl waterproot radio bag.
HH-SS Handheld shoulder strap.
HM-9 Speaker microphone.
HS10 Boom microphone/headset
HS-10SA Vox unit for HS-10 \& Deluxe only
HS-10SB PII unit for HS-10.
ML-1 2 m 23 w in/ 10 w out amplifiet - SALE SS-32M Commspec 32 -tone encoder 29.95
Receivers Regular SALE

R-7000 25-2000 MHz, 117V AC....... 899.00789^{95}
RC-12 Infrared remote controller
R-71A $100 \mathrm{kHz}-30 \mathrm{MHz}, 117 \mathrm{~V}$ AC. RC-11 Infrared remote controller
FL-32 500 Hz CW filter.......... 99.00649^{93}

FL. 250 Hz CW filter (1st IF) 48.50
FL-44A SSB filter (2nd IF)........... 159.00144^{9} ?
EX-257 FM unit
EX-310 Voice synthesizer.
CR-64 High stability oscillator xtal
SP-3 External speaker.
38.00
39.95
56.00
49.50

CK-70 (EX-299) 12V DC option
9.95

MB-12 Mobile mount.
(4)
Mastercard $\left.\begin{array}{c}\text { USE } \\ \text { YOUR } \\ \text { CREDIT } \\ \text { CARD }\end{array}\right)$ VISA

HOURS • Mon. thru Fri. 9-5:30; Sat. 9-3
Milwaukee WATS line: 1-800-558-0411 answered evenings until $8: 00 \mathrm{pm}$ Monday thru Thursday. Please use WATS lines for Ordering use Regular lines for other Info and Service dept.

WICKLIFFE, Ohio 44092 28940 Euclid Avenue Phone (216) 585-7388 Ohio WATS 1-800-362-0290
Outside 1-800-321-3594

ORLANDO, Fla. 32803
621 Commonwealth Ave.
Phone (305) 894-3238
Fla. WATS 1-800-432-9424
Outside Florida 1-800-327-1917
clearmater, fla. 33575 1898 Drew Street Phone (813) 461-4267 No in-state WATS No Nationwide WATS
LAS VEGAS, Nev. 89106 1072 N. Rancho Drive Phone (702) 647-3114 No in-State Wars Outsise hevide 1-800-634-6227

	8	8	\％	，	8		8		$\stackrel{\square}{8}$	$\stackrel{\square}{8}$	．	$\stackrel{\rightharpoonup}{8}$					\％		8	8	8		8	$\stackrel{8}{8}$	\％		
APRIL	\％	8	$\stackrel{3}{8}$	${ }_{8}$	$\stackrel{\rightharpoonup}{8}$	$\stackrel{\rightharpoonup}{8}$	\％	$\stackrel{\circ}{8}$	$\stackrel{8}{8}$	\％	8	8	8	8	8		梚	$\stackrel{3}{8}$	宕	\％	8	8	8	年	$\frac{8}{8}$	g	
		c	$\stackrel{\sim}{0}$	s	8	$\stackrel{\square}{8}$	\bigcirc		$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	\bigcirc	\circ	L		5	$\stackrel{\square}{0}$	$\stackrel{\sim}{0}$		\％	0	0		\sim	\sim	$\stackrel{\circ}{\circ}$		
Unope		0		\bigcirc		＊	r		ת	r	\bigcirc	0	\sim		E	5			${ }_{0}^{0}$	${ }_{\sim}^{\circ}$	${ }_{\sim}^{\circ}$		\therefore	－	${ }^{\circ}$		
crica		ज	二	$\stackrel{\sim}{\sim}$	5	5	5			5	5	$\stackrel{\sim}{\sim}$	ज		5	\checkmark	\sim		2	$\stackrel{\square}{\circ}$				O	\bigcirc		
ameica	b	O	b	\checkmark	5	5	5		\sim	N	促	\bigcirc	\％		¢	5	\sim		\％		\bigcirc		N	N	－		
NTARctica		に	G	ज	\checkmark	$ज$	\bigcirc		¢	${ }_{\sim}^{*}$	U	\％	${ }_{0}^{\circ}$	\cdots	${ }^{\omega}$	${ }^{\mu}$	${ }^{\circ}$	${ }_{\sim}^{\circ}$	\％	\sim	\％		穴	哴	9		
wizalano		5	二	N	ज	$\stackrel{\square}{4}$	5		\checkmark	\％	\checkmark	\sim	V		\bigcirc	5	\sim				－						ce
OCEANIA aUSTRALIA		5	二	二	S	\％				\sim	\sim	\sim	\％		\％	\％	倞				－		－		－		
japan		ज	$\stackrel{\circ}{\circ}$		8	\％	5		\sim	\％	\％	\＆			${ }_{0}$	${ }_{\sim}^{\circ}$	ω	\sim	\sim		N						
	$\frac{8}{8}$	8	\％		${ }_{3}$	$\stackrel{\rightharpoonup}{8}$	矿		$\stackrel{\circ}{8}$	8	\％	8	8	\＆	$\stackrel{4}{8}$	\％	$\stackrel{\rightharpoonup}{8}$		$\overline{\overline{8}}$	\％	\％	\％	\％	8	\％		
$\underbrace{}_{\substack{\text { asia } \\ \text { AAR EAst }}}$		0				\％	ω			\％	\bigcirc	\％	－		\％	ω	－		$\stackrel{\square}{8}$		ω		\％	～	－		
Eunope		\％	\％	\sim	0	O	ज			动	促	穴	\bigcirc		\sim	\sim	$\stackrel{\square}{\circ}$		${ }_{0}^{\circ}$		S		$\stackrel{\square}{\circ}$	－			
		令	u	N	5	\checkmark	5		5	\％	$\stackrel{\square}{0}$	－	N		\sim	\％	N	\％	\％		\approx		\％	\％			
america		5			5		$\stackrel{0}{0}$			～	N	ज	®		N	\％	N		ก	～	N		$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$			
antanctica							¢			\sim	＊	$\stackrel{\square}{0}$	$\stackrel{\square}{*}$		B	${ }_{\sim}^{\sim}$	¢	ω	${ }^{\omega}$		\sim		\％	穴	穴		
new zealand		\bigcirc	5	$\stackrel{\sim}{\sim}$	N	ज	\％			\％	N	\sim	\sim		N	\sim	\％		水		$\stackrel{\text { N }}{ }$		$\stackrel{\square}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{-}{-}$		
$\xrightarrow[\substack{\text { oceania } \\ \text { australa }}]{ }$		\bigcirc		N	枵	\sim	\sim			\bigcirc	N	\％	\％	N	N	0	\％	ज	\％	ज	へ		$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ}$	\bigcirc		
apan		ज			\％	－				\％	W	W	\％		合	＊	\％	W	${ }^{\omega}$		\％		\％	ज	哴		
	8	$\stackrel{8}{8}$	8̆	8	砣	${ }_{8}^{\text {g }}$			\％	\％	8	\％̈	8	${ }_{8}$	$\stackrel{8}{8}$	8	\％	$\stackrel{\square}{8}$	\％	8	\％	\％	8	\％	\％	§	
	8	${ }_{8}^{10}$	8	8	\％		\％		$\stackrel{\rightharpoonup}{8}$	$\stackrel{8}{8}$	8	\％	8ั	${ }_{8}^{\circ}$	8	8	8	\％	$\stackrel{\rightharpoonup}{8}$	8	言	\％	\％	8	\％	9	
		－	＊	$\stackrel{\square}{\circ}$	w		w			\％	O		$\stackrel{\sim}{7}$		N	N	N	＊	堸	$\stackrel{ }{\circ}$	$\stackrel{\sim}{\circ}$		${ }^{\omega}$	N	\％		
Unope		\bigcirc	\％	\％	\％	O	\bigcirc			$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\square}{0}$	0	\％		0	\％	ω	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{*}$	－		\％	ω			
		－			$\stackrel{\square}{0}$	$\stackrel{\circ}{\circ}$	－			－	\bigcirc	\bigcirc	～	～	ज	\％	\sim	\sim	O	\％	\sim		\％	\％	\％		
		\bigcirc	$\stackrel{\square}{\circ}$		－	$\stackrel{\square}{\circ}$	$\stackrel{\circ}{\circ}$			$\stackrel{3}{7}$	N	N	心	\bigcirc	\％	\％	\％	N	\％	－	\％			云	$\stackrel{\square}{\square}$		
crica		枵	－		जr	ज	0		\bigcirc	N	$\stackrel{\circ}{\circ}$	$\stackrel{\rightharpoonup}{\circ}$	－	－	$\stackrel{\circ}{\circ}$	$\stackrel{\rightharpoonup}{\square}$	${ }_{\sim}^{\sim}$	ω	¢	ω	${ }_{0}$		\％	访	号		
zeaino		$\stackrel{\square}{\circ}$	$\stackrel{\circ}{\circ}$	N	N	ज	a			\％	\％	\％	O	¢	\sim	\％	N	\％	埌		～		－	＇			
$\underset{\substack{\text { OCEENDAA } \\ \text { AUTRALA }}}{ }$		$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{\sim}{\sim}$	侕	\％	0		\sim	\％	N	\％	\％		\sim	0	\％	\％	ir		～		\checkmark	\checkmark			
																									N		

BJITY B Schronics Cop:

For the best buys in town call: 212-925-7000
los Precios Mas Bajos en Nueva York.

AEA 144 M AEA 220 MH AEA 440 MHz AEA 440 MHz
 SAY: WEARENOW OPENTDAYSAWEEK Saturday \& Sunday 10 to 5 P.M.
Monday. Friday 9 to 6:30 PM Thurs. to 8 PM ONV Satety
 belis-in stock

MAIL ALL ORDERS TO BARRY ELECTRONICS CORP.. 512 BROADWAY, NEW YORK CITY, NY 10012.

"Aqui Se Habla Espanol' BARAY INTERNATIONAL TELEX 12.7670 MERCHANDISE TAKEN ON CONSIGNMENT FOR TOP PRICES
Mondar -ridar $9 A M$ tofg 90 PN Thursday fos FC Sturtar A Sundey 0 AM to SPM ifwe Pemng AUTHOPIZED DISTS. MCKAY DYMER FO
SHORTWAVE ANTENNAS K RECEIVERS Subways: $\begin{gathered}\text { IRT/LEX } \\ \text { BMT - Pripce } \\ \text { SI St Station }\end{gathered}$ BMI - Prince St Station" IND-F- ${ }^{(1)}$ rain Bwy. Station Bus: Broadway ${ }^{6} 6$ to Spring St

Path-pith St.Sith Are Station

Comnomas Equpient Stocoeo ICOM MAXON

 munvevanties bust mexses Cint Detenis.
elc Portatien etc Portalien mobice
baver mpesters Communications Spec. Connectors. Covercrath. Cushicrat:, Daiwa. Dentron. Diqimax Drake, ETO (Alpha). Eimac, Encomm, Heil Sound, Henry. Hustiet (Niewtronicsi Hy Gain, com. KIM Kantronics
Larsen. MCM (Daiwa). MFJ. IW, Miller. Mini Products. Mirage Nowtronics. Nye Viking. Palomar, RF Products. Radio Arnateur Callbook
Robot Aockwell Collins. Sarton Shure. Teies. Tempo. Ten Tec
 Tokyo Hi Power, Trionyx TUBES, W2AU. Waber, Wilson, Yaesu Ham and
Commercial Radios. Vocom Vibropiex. Curtis. ThEs. Wacom Duplexers. Commercial Radios, Vocom, Vibropiti, Cumsis, Scanners. Cyystals, Radio Publications. WE NOW STOCK COMMERCIAL COMMUNICATIONS SYSTEMS ALERINOUIAIES INVITED PHONE IN YOUR ORDEA S BE REIMBURSED

, | MeL. |
| :--- |
| Young or Oid | a. commencial radios atocked a earviced on premises. Amateur Radio Courses Given On Our Premises, Call Sales

solar flux and a disturbed geomagnetic field.

Thirty and forty meters will be useful almost 24 hours a day. Daytime conditions will resemble those on 20 meters except that skip distances and signal strength may decrease during midday on days that coincide with the higher solar flux values. Nighttime DX will be good except during pre-dawn hours after days of high MUF conditions and during periods of geomagnetic disturbance.

Eighty and one-sixty meters will exhibit short-skip propagation during daylight hours and lengthen for DX at dusk. These bands follow the darkness regions, opening to the east just before your sunset and swinging more to the north near midnight, ending up in the Pacific areas during the hour or so before dawn on the path of your interest. The 160 -meter band opens later and ends earlier than the 80-meter band.
ham radio

This publication is available in microform from University (a)

Please send information about these titles:

Name

Companylinstitution

Address.

Gily
State
Phone!
Call toll-free 800-521-3044 In Michigan.
Alaska and Hawain call collect $313-761-4700$. Or mail inquiry to: Universaty Microfilms International. 300 North Zeeb Road. Ain Arbor. MI 48106.

- Technical Forums

- New Products

- Giant Flea Market
- License Exams
- Alternate Activities
- Special Awards
- CW Awards
- Admission

Personal Computer, Packet Radio, ARRL, AMSAT, Antennas, RTTY, SSTV/ATV FCC, Electrical Safety and many, many others.

See, touch and feel the latest in high-tech equipment.
Starting at noon Friday, all day Saturday and Sunday. All spaces are SOLD OUT.
Novice through Extra, by reservation only. Send a completed form 610, a copy of your present license and a check or money order for $\$ 4.25$ payable to ARRLNEC. Indicate the desired time. Send to: License Exam, Attn. Tom Holmes, 8830 Windbluff Pt., Dayton, OH 45459. Deadline: March 29.

HAMVENTION is for everyone. We have planned activities for the YL or your non-ham family members.

Nominations are requested for "Radio Amateur of the Year," "Special Achievement" and "Technical Achievement" Awards. Contact: Awards Chairman, Box 44, Dayton, OH 45401. Deadline: April 1.

See how fast you can copy the International Morse Code (World record is 72.5 WPM). All participants receive an award indicating their maximum speed.

```
Registration: \(\$ 8.00\) in advance, \(\$ 10.00\) at the door.
Banquet (Roy Neal, K6DUE, Speaker): \$14 in advance, \(\$ 16.00\) at the door,
if available.
Ladies Luncheon: \$6.75.
Last Day for advance tickets: April 5 (Canada), April 12 (U.S.).
```


- Housing

- Parking

- Other Information

> Most motel rooms in the Dayton area have been set aside for the HAMVENTION. Write: Dayton HAMVENTION Housing, 1980 Kettering Tower, Dayton, OH 454231980. NO RESERVATIONS WILL BE ACCEPTED BY TELEPHONE.

Free parking is available at Hara Arena. In addition, there will be free shuttle bus service from all major motels and designated parking lots. Parking and road information is available on DARA's 146.34/.94 repeater.

Special air fares are available on Piedmont and USAir. A free slide show about the HAMVENTION is available for club meetings. Wheelchairs and handicap parking are available. For more information ... Write: Box 44, Dayton, OH 45401 or call (513) 433-7720.

This is the year for you to attend the internationally famous Dayton HAMVENTION. Come with your friends to hear enlightening forums, see the latest equipment, and visit a flea market that has everything! No matter what you are looking for, you can find it in Dayton!

improved repeater/ transmitter noise performance

Solid-state technology has dramatically improved the reliability of most Amateur repeater systems. However, the changeover from tubes to semiconductors has not always progressed as smoothly as expected for some repeater operators

Repeater desense is normally caused by inadequate transmitter-toreceiver isolation, allowing gain compression to occur in the repeater receiver. The 100 dB isolation characteristics provided by modern duplexers, when properly installed, make this an unlikely possibility. Alas, the duplexer is often blamed for poor repeater performance even though the problem is actually in the transmitter.

If repeater desense occurs when a new solid-state exciter replaces an older tube type, chances are the problem is caused by excessive transmitter noise products. The standard cure recommended for this is usually the addition of another transmitter notch cavity. Unfortunately, this is an expensive, bulky, and lossy (about 1 dB) solution. Earlier tube exciters, with their hi- Q interstage coupling networks, minimized this problem. ${ }^{1}$ The low- Q interstage networks in solidstate transmitters increases the bandwidth and thus the noise output on the receiver frequency.

what can be done?

Commercial repeater manufacturers
have been aware that the single stage most often responsible for transmitter noise is the phase modulator. For this reason, most commercial repeater systems now use direct FM techniques i.e., varactors - rather than phase modulators. Another approach involves the use of a two- or four-pole monolithic filter after the last multiplier stage, or frequency synthesizer, preceding the power stages. ${ }^{2}$ (These filters, normally used to increase the IMD performance of the VHF receivers, are capable of handling only about 5 mW of power.)

One advantage of using a crystal filter lies in reducing transmitter noise at all frequencies on either side of the transmitter carrier; in the same application, a notch filter would only protect the receiver channel. Crystal filters are expensive ($\$ 100-\$ 200$), and considering their power restraints, 50 -ohm termination impedances and insertion losses might prohibit their use in most existing transmitter designs.

Repeater operators seeking a new solid-state exciter should look for one using low-noise direct FM. Avoid phase modulation. If a homebrew transmitter design is being contemplated, consider including both direct FM and a four-pole monolithic filter to further reduce the transmitter's noise products. The improvements are dramatic and well worth the effort.

references

1. FM and Repeaters for the Radio Amateur, First Edition, American Radio Relay League, 1972, Chapter 9 pages 148-150.
2. "DigiCap VHF Transinitters," Bulletin No 100-0006-008, June, 1981, Quintron Corporation Quincy, Illinois 62301.

Peter Bertini, K1ZJH

Invitation to Authors

ham radio welcomes manuscripts from readers. If you have an idea for an article you'd like to have considered for publication, send for a free copy of the ham radio Author's Guide. Address your request to ham radio, Greenville, New Hampshire 03048 (SASE appreciated).

ALPHA DELTA Tech Notes

ALPHA DELTA ANTENNA and
 AC LINE PROTECTORS the inside story

- Who Needs Them
- Do They Really Work
- Why Are There Several Different Models

Who Needs Them

Lightning is the most common cause of component damage. However, we occasionally run into those who say "I've never been hit by lightning" or "I live on the West Coast and we don't have much lightning.' Don't be fooled. There are demons lurking everywhere from your $A C$ line to antenna that can damage your gear. Before exposing those, let's look at data about thunderstorms.

On average, the number of annual days with thunderstorms per area are approximately: West Coast, 5; Southwest, 20 to 40; Texas, 40 to 70 ; Midwest, 40 to 50; East Coast, 30 to 50; South, 50 to 70; and Florida, up to 100! Really, no matter where you live, you should be aware and protected from the potential for lightning-induced damage

Now, what about what you can't see that does damage equipment? Dry desert winds in the Southwest and West Coast, wind driven snow and summer cloud buildup are all generators of enormous amounts of static electricity. Static-induced voltages from any one of these conditions can build up levels of 3 kV or more! If you've ever had the occasion to watch the static discharge jumping from the end of a long wire hanging near a chassis, you'll know what we mean.

What's worse, this type of damage is not always catastrophic. Semiconductors can suffer junction damage and will degrade over a period of weeks or months, causing subtle system problems and a gradual loss of sensitivity.
In the case of $A C$ line protection, semiconductors are known to be damaged by transients caused by AC motors starting and switches, surges from power company "brown-outs" and poor regulation and even the effects of fluoresent lighting. If you have had the chance to see a graphic printout from an AC wall socket analyzer, you wouldn't plug anything in again that was unprotected.
So who needs Alpha Delta? Everyone. Regardless of season or geographic location

Do They Really Work

First, let's settle one issue. Most storm damage comes from either voltage induced into the antenna from a near-hit lightning strike (as much as a mile away) or static buildup. No manufacturer claims their device will protect you from a direct lightning hit. That's because there is no standard by which to describe one. Some hits can generate currents of over 100,000 amperes. These might even destroy a house! Others are in the range of hundreds of amperes and may be satisfactorily by-passed to ground through a lightning protector.
Since the chances for damage from induced (non-direct hit) sources are several thousand times greater than direct hits, an effective protector has a definite place in a communications system.

Alpha Delta Transi-Trap ${ }^{\text {TM }}$ ceramic gas tube protectors do provide effective protection because they were designed and tested to be used with the most sensitive semiconductors. They do this because they fire fast enough, (less than 100 nanoseconds), and at a low enough level to effectively by-pass the typical range of induced currents and voltages. Standard air-gap devices cannot reach this performance level due to variations in atmospheric conditions that will effect conduction of the static charge to ground.
In addition, Transi-TrapTM protectors are the only devices in the industry employing a combination of "fail-safe" isolated ground design and a field replaceable ARC-PLUGTM cartridge. Isolated ground prevents the ARC discharge from flowing to the equipment chassis via the coax shield. "Fail-safe" means the ARC-PLUG cartridge is designed to fail "shorted" instead of "open" in the event of a heavy discharge in excess of its rating. In this event, the equipment is still protected until the cartridge is replaced. Replacement is indicated by a "dead" receiver and high VSWR during tune-up.

Competitve air-gap devices suffer electrode disintegration and fail "open." You will lose your protection and you don't even know it! One competitive gas tube device is designed to melt its solder connections and fail "open" in the event of heavy current flow. The protection is gone, the element is non-replaceable and you still don't know it!
Transi-Trap ${ }^{\top M}$ protectors have been thoroughly tested by independent government and military test labs, and have been ordered for use around the world in a number of government and military programs. An Avionics user recently reported that since installing Transi-Trap ${ }^{\text {TM }}$ devices, there has been no loss of communications due to induced transients. A leading designer of quality HF and VHF antennas, Butternut Electronics, suggests the use of Transi-Trap protectors in their literature.
A major computer manufacturer has selected MACC Master AC Control Consoles to protect their own systems from AC line transient related damage. This was done after extensive testing of all devices presently available.

Why Are There Several Different Models

We offer a choice of models to provide the most effective cost/power/frequency/connector combination.
STEP \#1: Select your power range. The 200-watt models are the most sensitive to transient pulses and are the best choice for receivers and transceivers. The 2 kW models are designed for overall station protection and for linear amplifiers.
STEP \#2: Select your frequency range. The UHF "T'" connector model (LT) offers low insertion loss protection through 30 MHz . The lowest-loss devices are the R-T and HV (typically 0.1 dB at 500 MHz) with UHF-type connectors. The R-T and HV models utilizing type " N " or "BNC" connectors offer even less loss through 1000 MHz ! They are perfect for cellular radio and STL operation in the 800 and 900 MHz ranges.

Models available are:
Model LT: UHF "T"' type, 200 W , through 30 MHz 19.95 Model R-T: UHF connectors, 200 W , through $500 \mathrm{MHz}29 .95$ Model HV: UHF connectors, 2 kW , through 500 MHz 32.95 Model R-T/N: N connectors, 200 W , through $1000 \mathrm{MHz}36 .95$
Model HV/N: N connectors, 2 kW , through $1000 \mathrm{MHz}39 .95$

(BNC connectors also available)

The surge protected MACC model is: Model MACC - 8 outlets, and master switch control 79.95. ACTI - wall socket direct plug-in with 2 outlets 29.95 .
Alpha Delta Transi-Trap antenna line protectors and MACC Master AC Control Consoles provide more than near-hit lightning protection. They will give you protection to cover all forms of static and transient surges from your antenna to your power line - at an attractive price
Available from your local Alpha Delta dealer or direct plus shipping $\$ 2$ Transi-Traps ${ }^{\text {TM }}$. $\$ 4$ MACC

| ICOM |
| :---: | :---: | :---: | :---: |
| P.O. Box 4405 |
| 220 N. Fulton Ave. |
| Evansville, IN 47710 |
| Stores Hours |
| MON-FRI 9AM-6PM |
| SAT 9AM-3PM |

AEA - ARRL - ALINCO - ALLIANCE •ALPHA DELTA - AMECO - AMERITRON - ANTENNA SPECIALISTS • ASTRON • B\&W • BENCHEA - BUTTERNUT - CSI • CALLBOOK

- COMMUNIEATION SPECIALISTS - CUSHCRAFT - DAIWA - DATASCAN - HEIL - HUSTLER - HYGAIN - ICOM - KDK - KLM - KANTRONICS • KEN PRO • LARSEN - MFJ - MICROLOG - MIRAGE - NYE - ROHN - SANTEC SHURE - TEN TEC - TOKYO HY-POWER - UNADILLA - VALOR • VIBROPLEX - WELZ - YAESU
ORDERS AND PRICE CHECKS ONLY, PLEASE
1-800-523-7731
INFORMATION AND INDIANA
812-422-0231
SERVICE DEPT.
812-422-0252

Get $\star \star \star$ CONNECTED to Packet Radio
 by Jim Grubbs, K91:I

The Packet Radio Handbook
Over 150 pages of information exclusively on packet radio

17 Chapters including:

\star Choosing a TNC \star Packet protocol for the beginner \star Packet Accessories
\star How to make your first packet contact \star Packet Bulletin Board Operations $\$ 12.95$ plus $\$ 2.50$ for first class shipping and handling in U.S. and Canada.

Also available The Commodore Ham's Companion \$15.95 (see January ' 86 QST page 47 or February ' 86 CQ page 68)
P.O. Box 3042 and Command Post \$9.95.

a new class of directive antennas

Improve Yagi performance with curved 1.5 λ elements

In the May, 1983 issue of Transactions on Antennas and Propagation, ${ }^{1}$ Chang and Cheng introduced a new class of antennas that appear to offer much promise for VHF use. Based on concepts developed earlier by F. M. Landstorfer, ${ }^{2}$ these antennas feature curved elements, each longer than a wavelength and shaped to compensate for the reversals in phase that occur each half wavelength along an element.
With the 1.5 wavelength elements in the classic reflector-driven-director configuration used in the original experiments Landstorfer claimed gains of 11.5 dBi . The same gain in a conventional Yagi using straight half-wave elements would require about nine elements and a much longer boom. While the new design requires greater width, the combination of gain, short boom length, and mounting simplicity form the attractive features of the design.

principle of operation

The general concept and plan of these antennas is shown in fig. 1. The center part of the elements resembles a V radiator. The phase center of the V radiation lies along the center axis, and some distance from the apex of the V. A wave radiated from this section will arrive at the other element parts after a time delay that corresponds to a phase rotation. As a result, even though the outer sections are out of phase with respect to the center section, the delayed wave will be at least partly in phase with the waves radiated by the outer sections. This addition of wave components accounts for the increase in gain over a conventional straight-element Yagi.

The design problem presented by these antennas is to determine the shaping of the elements for maximum gain. This subject was addressed by Chang and Cheng in their article.' They approximate the current distributions on the array elements by the method of moments, dividing each element into 22 sections and analytically determining the shaping for maximum gain. The computations are extensive, involving a 63 by 63 complex matrix manipulation (a solution requires

fig. 1. General principle of operation using a shaped element. The center of radiation of the outer half-wave sections is in front of the radiation center for the center section, giving both a spacing and a phase difference, as in the ZL-Special. The outer sections may be separately excited, as shown, or joined to the center part. This illustration assumes that the middle half-wave section is center-fed.

By R. P. Haviland, W4MB, 1035 Green Acres Circle, No., Daytona Beach, Florida 32019

```
FEADY.
10 REM HIGH GAIN YAGI "HGAINYAGI", IN COMMODORE SIMONS EASIC
20 REM R F HAVILAND,6 JUNE }198
3O FEM FEEFEF TO TFANS IEEE AF-31,MAY 198S
40 FRINT " {CLR}"
5O DIM A(3), E(3),C(3),D(3),Z(3)
60 DIM Y(20.4)
70 A(1)=.38:A(2)=. 395:A(3)=.364
80 E(1)=20.77:E(2)=53.014:E (3)=204.532
90 C(1)=-.162:C(2)=0:C(3)=.151
100 D(1)=.645:D(2)=.59:D(3)=.55
110 INFUT "FRINTOUT,Y OR N ":T$
120 FFINT"FRESS SPACE TO END SCREEN DISFLAY"
130 FRINT "ENTEF FFEQUENCY, MHZ ":
140 INFUT F: LAMDA= 984/F
150 FFINT F: FFINT"ELEMENT LENGTH= ":1.5*LAMDA;" FEET"
160 FRINT "ELEMENT DIAMETER ":12*LAMDA/100;" INCHES"
170 FOF N=1 TO 2O: FOF M= 3 TO 1 STEF -1
180 X=(N-1)/20
190 IF X OD (M) THEN Y (N,M)=0:GOTO 220
200 Y(N,M)=A(M)*(1-1/(1+E(M)*X*X))+C(M)
210 Y(N,4)=X
220 NEXTM:NEXTN
2SO FRIINT"Y VS X COOFDINATES, INCHES"
240 FRINT"X":TAB(10):"DIF";TAB(20):"ANT";TAE(SO);"REF"
250 FOF N=1 TO 2O
260 X=INT (1200*LAMDA*Y(N,4))/100
270 FOF M=1 TO Z
280 Z(M)=INT (1200*LAMDA*Y(N,M))/100
290 NEXT M
ЗOO FFINT X:TAE(10):Z(1):TAE(20):Z(2):TAE(30)Z(3):
310 NEXT N
30 WAIT 197.32
3O IF T$="Y" THEN HRDCF'Y
S40 HIFES 0.1
S50 FOR M=1 TO S:FOF N=2 TO 16
360 T=N-1
S70 IF Y (N,M)=0 GOTO 400
380 LINE 160-200*Y(T,4), 200*Y (T,M)+40,160-200*Y(N,4),200*Y (N,M)+40,1
390 LINE 160+200*Y(T,4), 200*Y(T,M)+40,160+200*Y(N,4), 200*Y(N,M)+40,1
4OO NEXT N:NEXT M
410 IF Tक="Y" THEN CDFY
420 WAIT 197,S2:NFM
READY.
```

fig. 2. Computer program provides dimensions of a three-element version of the shaped element array. While the program is written in Simons' BASIC for the Commodore 64, translation for other computers should not be difficult.
approximately 40 minutes of DEC- 10 computer time). The problem is far beyond the capability of home computers.

program listing aids 3-element design

Fortunately, Chang and Cheng have summarized their results in such a form that makes it possible to
duplicate their optimized design for a three-element Yagi array. For convenience, the results have been arranged as a computer program, fig. 2, written in Simon's BASIC for the Commodore 64. The program is written for easy translation to other versions of BASIC; only the graphic generation section may require a complete rewrite.

vล1 - COD'S WELCOME!

CALL OR WRITE FOR OUR FREE CATALOGUE 3:00 P.M. WE SERVICE WHAT WE SELL!

BUY - SELL - TRADE 513.868.6399

Increase your Code Speed the FUN Way with
Station Manager/CodeTutor
Randomly generates words eliminating the problem of tape memorization.

Select your own speed and tone $5-50 \mathrm{wpm} \quad 400-1300 \mathrm{~Hz}$ Designed for the IBM ${ }^{*} \mathrm{PC}^{*}, X T^{*}$, enhanced PC jr ${ }^{\bullet}$. Menu driven, prompts for easy use; full color displays:
$\$ 15.95+\$ 3.00$ shipping Ohio residents include sales tax
OMEGA CONCEPTS
Professional software for the Radio Amateur'w
P. O. Box 615
Troy $0 H 2537$

T.L. Jones (KB80A) Author

IBM is a registered trademark of international Business Mactine Corp

TUBES-2,000 TYPES DISCOUNT PRICES!
New 20-pg. wholesale catalog for the radio collector/hobbyist. Antique, hard-to-find and modern tubes. Also transtormers. capacitors and parts for tube equipment, and books, etc
Antique Electronic Supply
688-F W First Street
Tempe, AZ. 85281
602/894-9503

CANOPIES

All weather protection
for outdoor shows
SLANT, PEAK OR FLAT ROOFS
FREE STANDING - FAST SET-UP
NO TOOLS REQUIRED .
SNAPS TOGETHER
WHITE OR BLUE TARPS
FITS IN THE TRUNK OF A CAR
JOINTS \& PARTS
PACKAGE COMPLETE -
READY TO USE
MONEY BACK GUARANTEE
Free brochure on request
ElaiIIC ${ }^{\text {P } 0.80 \times 261}$ HIGHWOOD, IL 60040 (312) 433-0106

Martin IIIC.

ELEMENT LENGTH=		10.109589 FEET	
ELEMENT	DIAMETER	. 808767123	INCHES
Y US X	COORDINATE	S. INCHES	
X	DIF	ANT	REF
0	-13.11	0	12.21
4.04	-11.59	3.73	22.17
8.08	-7.82	11.66	31.98
12.13	-3. 32	17.37	36.39
16.17	. 84	21.7	38.44
20.21	4.25	24.53	39.51
24.26	6.92	26.41	40.13
28.3	8.96	27.68	40.52
32.35	10.52	28.57	40.77
36.39	11.72	29.22	40.95
40.43	12.66	29.7	41.08
44.48	13.41	30.07	41.18
48.52	14	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
\bigcirc	0	0	0

fig 3A. Tabular output of the computer program for a frequency of 147 MHz . X and Y are normal Cartesian coordinates. The 0 's indicate that the end of the element has been passed. These values may be scaled for other frequencies.

The program first determines whether hard copy is needed, then requests its only input, the design frequency. Element length and diameter are then outputted, followed by a table of X, Y values that define the center-line position of each element. The feedpoint, or center of the radiator is taken as the coordinate origin. Figure 3A shows the screen presentation (the ending 0 's indicate that the end of the element has been passed). Pressing the space bar produces a plot of the lines defining the element centers, as shown in fig 3B. Pressing the space bar again either initiates a hard copy or terminates the program.

The general resemblance of this type of antenna to a conventional Yagi is apparent in the figures. The element shaping causes a taper towards the forward direction, even though the elements are the same length. And the deep V of the director gives an effective wide spacing for the director.

high gain is achieved

The performance of this optimized design is very good. According to Chang and Cheng,' gain calculates to be 11.8 dBi . Beamwidth is 32 degrees in the element plane, and 62 degrees at right angles to it. Front-to-back ratio is just less than 15 dB in both planes. Feed impedance of the $3 / 2$ wavelength radiator is calculated to be $14+j 33$ ohms.

fig. 3B. High resolution computer plot of the data of fig. 3A, showing the center line of the elements. Although each element is 1.5 wavelength long, the sheping makes the reflector appear longer and the director shorter than the radiator.

It should be noted that the design values are optimum only for the element diameter given. This was arbitrarily set at 0.01 wavelength by Chang and Cheng. Performance should not be greatly affected by a reasonable change in element diameter.

Because of the complexity of the required calculations, and the many hours of mainframe computer time necessary to perform them, it is unlikely that there will be much further analysis of the type. Further work will have to be experimental. None has been attempted by the author, but it would seem that additional gain could be secured by placing additional directors of similar shapes in front of the present single director, using appropriate spacings. It would also seem that any of the common matching methods would be usable. Stacking spacing rules of high-gain Yagi type would appear necessary.

conclusion

Those who do not have a computer available, or who wish to avoid the tedium of typing in the program, can use these results by simple frequency scaling. All table dimensions should be multiplied by the ratio, 147/new frequency, since the table was calculated for 147 MHz . Element diameter and length vary in the same way.

references

[^8]BLACK DACRON ${ }^{\text {D }}$ POLYESTER ANTENNA ROPE

- UV-PROTECTED
- HIGH ABRASION RESISTANCE
- REQUIRES NO EXPENSIVE

POTTING HEADS

- EASY.TO TIE \& UNTIE KNOTS
- EASY TO CUT WITH OUR HOT KNIFE
-SIZES: 3/32" $3 / 16^{\prime \prime} \quad 5 / 16^{\prime \prime}$
- SATISFIED CUSTOMERS DECLARE EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON ROPE TO YOU - SEND YOUR NAME AND ADDRESS AND WE'LL SEND YOU FREE SAMPLES OF EACH SIZE AND COMPLETE ORDERING INFORMATION
synthetic

- 176

SERVICE CENTER
for
ICOM, KENWOOD and YAESU
Fully equipped repair shop Amateur, Marine and Land Mobile repairs.

FCC NABER Lic
Mon-Fri 10:00-4:00 pm
(206) 776-8993 PACIFIC RIM
COMMUNICATIONS

Bob KG7D
23332 58th Ave. West Mountlake,Terrace, Wa 98043
Vाड़ा \& C.O.D.S. Welcome ค 177

AMATEUR RADIO MAIL LISTS
Self-stick 1×3 labels
*** NEWLY LICENCED HAMS ***
*** ALL NEW UPGRADES **
*** UPDATED EACH WEEK ***
Total List $=462,728$ (ZIP sorted) Price is 2.5 cents each (4-up Cheshire)

BUCKMASTER PUBLISHING
Mineral, Virginia 23117 703:894-5777
[MULTI-BAND SLOPERS]
ALSO DIPOLES \& LIMITED-SPACE ANTEMEAS
 1ow SWH-Coas loed- 3 kw powel. Comeact. EVLY ASSEMMLED
 4 BANO SLOPEA - 160.80 .40 .30 or 20 M 160.80 .40 m
50.40 m

NO-TRAP DIFOLE $150.90,40 \mathrm{M}$ BANO SPACE-SAVEA DIPOLE 160 M

 SEMO SASE for complete detaiis of thete and oither unique BOX $393-H$ MIN MI. PROSPECT, IL 60056

There are two ways you can operate an amateur dual band UHF/VHF radio: you can go through the extra expense and bother of using two antennas... or, you can install the new Larsen 2/70-the single antenna that brings you both bands.

The Larsen 2 / 70 blends a half-wave element for 2-meter ($144-148 \mathrm{MHz}$) amateur band and collinear elements for $70 \mathrm{~cm}(440-450 \mathrm{MHz})$ amateur band. One antenna serves both bands, and is available with three different mounts for any mobile needs.

The self-resonant design of the Larsen $2 / 70$ allows mast
applications for vessels and base stations outfitted with standard Larsen BSA-K hardware. With or without a ground plane, the Larsen 2/70 gives you the highest performance attainable, whether you are using a dual band radio or two separate radios.

If your radio does not have a built-in band splitter, we can even provide that.

Performance...savings... convenience ... and a nononsense warranty - four great reasons for banding together with the Larsen $2 / 70$. See your favorite amateur dealer or write for a free catalog today.

[^9]
RTTY/CW computer interface

Quite a while ago, I quit operating RTTY and retired my old Model 15 because my ham shack wasn't all that soundproof. A few years ago, articles and ads appeared about RTTY computer interfaces. And that meant quiet . . . and no paper! But it wasn't until just a few weeks ago that I finally got an MFJ Model 1224 RTTY/CW Computer Interface Unit. I had a VIC-20, bought for another purpose, and so in less than an hour, I was on RTTY again!

Much of that time was taken finding a power supply to run it. There's a lot of information in the Owner's Manual, but not how much current was needed. A look at the diagram showed only a few chips and transistors. So I took a chance and hooked up a couple of 6 -volt lantern batteries and measured it. It turned out to be a little over 200 mA .

specifications

Size: $8.5^{\circ} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 1.5^{\prime \prime} \mathrm{H}$.
Power required: 12 volts DC at 250 mA . Computer: C-64 or VIC-20.
RS-232 interface: available (MFJ-1223).
Software: MFJ-1252 or MFJ-1264 (works with other software).
Accessories supplied: cable with 5-pin plug; 4-pin microphone plug; RCA interface cable.

installation

The unit comes with a cable to connect to the VIC-20 or the C-64. Two clip leads and a Radio Shack cable with RCA phono plugs were used to connect up the audio from the rig. It took a few moments to load the cassette program into the VIC-20 and a few more to get the hang of tuning in the RTTY signal. But right there on the screen was the first RTTY QSO I had "listened" to in years.

operation:

Because the MFJ-1224 doesn't have all the bell and whistles of some of the more expensive units, it takes a little while to get the hang of tuning. Instead of using a 'scope with the familiar "plus" pattern, two LED tuning indicators are used. One is marked "PHASE LOCK" and the other "DATA."

The receiver should be on LSB for receiving RTTY. Most RTTY signals are 60 WPM and 170 Hz shift. Tune from the low tone to a high tone. Watch the phase lock LED. It will flicker and then lock on.

If the station is sending at 60 WPM, the QSO should appear on the screen. If your receiver has an IF shift control, adjust it so the signal is centered in the passband.

switching from RTTY to CW

The RTTY and CW programs are on the same tape. So to switch to CW, you only have to load in the other program, and start tuning. On CW both tuning LEDs flicker with the signal. The MFJ-1224 uses the $2125-\mathrm{Hz}$ RTTY filter in the CW mode. Because 2125 Hz is down the slope of the pass band of most modern-day receivers, IF shift control is almost a necessity for receiving weak CW signals.

transmit

The instructions for using the MFJ-1224 on CW or RTTY transmit are quite complete. Audio Shift is used on RTTY; either Grid Block or Direct Keying can be used for CW.

software

MFJ has software available for both the VIC-20 and the C-64. But they also provide a listing showing the DIP switch positions for most of the other popular RTTY software packages as well. An RS-232 interface (MFJ-1223) is available.

Purchasers of this unit need some experience in RTTY to use it to its full potential, but it is a relatively low-cost way of trying out this mode before leaping in with both feet. The unit is well built; I accidentally dropped mine on the basement floor!
For information contact MFJ Enterprises, Box 494, Mississippi State, Mississippi 39762.
-VE3ZL
Circle /302 on Reader Service Card.

new 2 meter transceivers from Kenwood

Trio-Kenwood Communications has announced the all-new TM-2570A - the first compact 70-watt, 2-meter FM mobile transceiver and the TM-2550A and TM-2530A 2-meter FM transceivers. The 25 -Series includes many new features never before seen in 2-meter FM equipment. All three models have a bult-in telephone number memory and automatic dialer. Up to 15 seven-digit telephone numbers may be stored.

All front panel controls, including the 16-key DTMF pad, are back-lighted for nighttime visibility. Twenty-three memory channels store frequency, offset subtone, and telephone number. The CTCSS encoder is programmable from the front panel when the optional TU-7 subtone unit is instalied. All standard EIA tones are included, plus the Motorola 97.4 Hz tone, for a total of 38 separate CTCSS tones.

Frequencies are entered into either the VFO or memory with direct keyboard entry. The 25-Series includes frequency coverage for MARS and CAP operation and is modifiable to cover $141-151 \mathrm{MHz}$. Programmable scanning with priority alert and center stop tuning are standard features.

Digital Channel Link (DCL), a revolutionary new signalling concept compatible with Kenwood's Digital Code Squelch (DCS) system, is available as an option. DCL enables the 25 -Series radio to automatically switch to an open channel. Practically speaking, this feature will allow you to automatically QSY to an open simplex channel after making initial contact via repeater.

Supplied accessories include a hand-held microphone with up/down frequency controls, DC cable with fuse, mounting bracket, and microphone hanger. Optional accessories include the PS-50 heavy power duty supply for the TM-2570A, PS-430 DC supply for the TM-2550A and TM-2530A, TU-7.38-tone CTCSS encoder, VS-1 voice synthesizer, MU-1 DCL modem unit, SP-50 deluce mobile speaker, SP-40 compact mobile speaker, CD-10 call sign display, SWT-1 compact antenna tuner, and a wide variety of other station accessories.

For further information, contact TrioKenwood Communications, 1111 West Walnut Street, Compton, California 90220.

in-line GaAsFET preamp

Hamtronics, Inc. has announced a new lowcost preamplifier designed to be operated in the antenna line of VHF or UHF transceivers. The new model LNS (low noise switching) preamp is patterned after the popular LNG series, which was the first of the affordable GaAsFET preamps on the market. The heart of the unit is a stable, dual-gate GaAsFET amplifier combined with two special low-loss UHF relays, which use goldplated contacts for long life. A microstrip PC board combines with these special relays for low VSWR on the transmit throughput.

The preamp is switched out of the signal path automatically whenever a transmit signal is
present. It may also be remotely bypassed manually as desired. The LNS is designed for base or mobile operation, and mounting brackets are provided to allow tower mounting. The LNS can be used with any transceiver up to 25 Watts; and if a separate PA is used, the LNS can be used between the transceiver and the PA. The preamp works with any mode: FM, SSB, CW, ATV, etc. A delay in the RF sensing circuit prevents relay chatter on SSB or CW.

Typical gain of the preamp is 18 dB and typical noise figure is 0.8 dB . Transmit signal attenuation is only $1 / 2 \mathrm{~dB}$. An LED indicates when the preamp is active. The unit is housed in an attractive aluminum case only $3-7 / 8^{\circ} \mathrm{W} \times 2-7 / 8^{\prime} \mathrm{D} \times 1$ $1 / 2^{\prime \prime} \mathrm{H}$.

The LNS Transceiver Preamp is available in the following models:

model	tuning range
LNS-144	$120-150 \mathrm{MHz}$
LNS-160	$150-180 \mathrm{MHz}$
LNS-220	$200-240 \mathrm{MHz}$
LNS-432	$400-500 \mathrm{MHz}$

3 dB bandwidth
$\pm 5 \mathrm{MHz}$
$\pm 10 \mathrm{MHz}$
$\pm 12 \mathrm{MHz}$
$\pm 15 \mathrm{MHz}$
The price of the LNS Transceiver Preamp is only $\$ 68$ in kit form and $\$ 98$ wired and tested.

A complete 40 -page catalog describing this and other Hamtronics products is available from Hamtronics, Inc., 65-F Moul Road, Hilton, New York 14468-9535. (Add $\$ 1.00$ for first-class mailing; for overseas mailing, please send $\$ 2.1$

new packet video helps get you started

Would you like to learn more about packet radio? Are you having a hard time getting started up in packet? Well, help is on the way, thanks to Kantronics' firs̀t instructional video, Basic Packet.

In the course of answering service calls and talking to Amateurs around the country, Kantronics - manufacturers of the new KPC Packet Communicator, an AX. 25 Version 2.0 TNC found that many operators were having difficulty getting started on packet. The difficulties were not with the equipment, but rather with understanding the basic operating procedures of packet radio itself.

Conducted by Phil Anderson, W0XI, the video covers basic subjects such as initial installation and hook-up, VHF and HF operation, digipeating, parameter perming, and some command demonstrations. The tape begins in the class room, then takes you into the shack for on-theair demonstrations.

The tape is available to individuals and clubs in both VHS and BETA formats. Suggested retail is $\$ 22.50$ plus $\$ 2.50$ shipping and handling. Clubs only can receive a $\$ 10$ refund if the tape is

MOSLEY...A Better Antenna
For New and Did

-EASY ASSEMBLY	$* 2$ YEAR WARRANTY
- NO MEASURING	"LOW SWR
-ALL STAINLESS HARDWARE	"BUILT TO LAST

TA-32

TA. 33
Whether you are fust starting out or trying to complete the Honor Roll. Mosley ofters a Fuil Line of Tre:Banders which will mechanically and electronically outperform the competition For the new ham with limited space and pocket took, start with out TA-31 Jt rotatable dipole You can make our TA-31 dr into a 2 or 3 element as your needs increase
If you start with the need to run higher power then the TA-31 is tor you. This also can be made Into a 2 or 3 element beam as you expand your

For the ham that wants a liftie more pertormance out of a Tri-Bander but is limited in room. then our CL-33 on a 18 toot boom is the way to go For those that want MONO BAND pertormance out of a Tri-Bander, want to hear better. and be loucter the $\mathrm{CL}-36$-is for you

For the ham that wants to start right at the top. the PRO-57 is the antenna that will give you king of the hill performance it is the broadest banded. highest power, Lest performing Multi-Bander in our line. PRO-57: $(10,12,15,18,20)$ also available. PRO-67 (10, 12, 15, 18, 20 \& 40)
Compare ours before buying any other antenna All stainless standard all heavy telescoping aluminum elements which means better quality and no measurement. Ease of assembly gives you a quality antenna with consistent pertormance Our elements are pre-driled so you will get the same pertormance as we do All ot our Tri-Banders come with a 2 year warranty
If you are a new ham and are not tamilar with MOSLEY ask an older ham about us or call the PRESIDENT of MOSLEY He will be glad to ex plain why MOSLEY is A BEITER ANTENNA
These and other MOSLEY products are available through your favorite DEALER. Or write or call MOSLEY for the DEALER nearest you
Morterfane.
I344 BAUR BIVD ST LOUIS. MISSOURI 63132 1-314-994-7872

1-800-325-4016

DESIGN EVOLUTION IN RF P.A.'s

Now with GaAs FET
Preamp

- Linear (all mode) RF power amp with automatic T/R switching (adjustable delay). Amplifier useable with drive powers as low as $1 / 2$ watt.
- Receive preamp option, featuring GaAs FETS (lowest noise figure, better IMD). Device NF typically .5 dB .
- Thermal shutdown protection incorporated
- Remote control capability built-in
- Rugged components and construction provide for superior product quality and performance
- All models include a complete operating/ service manual and carry a factory warranty on all components
- Designed to ICAS ratings, meets FCC part 97 regulations
- Approximate size is $2.8 \times 5.8 \times 10.5^{\prime \prime}$ and weight is 5 lbs .

Specifications/price subject to change
Models with G suffix have GaAs FET preamps. Non-G suffix units have no preamp.
2. Covers full amateur band. Specify 10 MHz Bandwidth for $420-450 \mathrm{MHz}$ Amplifier.
*SEND FOR FURTHER INFORMATION *
TE SYSTEMS
TE TYSTEMS
P.O. Box 25845

Los Angeles, CA 90025
(213) 478-0591

SPECIALIZED COMMUNICATIONS FOR TODAY'S RADIO AMATEUR!

If you are ACTIVE in FSTV, SSTV, FAX, OSCAR, RTTY, EME, LASERS or COMPUTERS, you need "THE SPEC-COM JOURNAL" ${ }^{\text {T" }}$

Published 10 Times
Per Year
By WBøQCD

CALL TOLL-FREE 1-800-628-2828 ext. 541

> ..and place your subscription order today! Our Membership Services HOTLINE is good for all 50 U.S. States including Hawaii $\&$ Alaska and ALL of CANADA! U.S. subscriptions $\$ 20$ per year. Foreign slightly higher. Back issues are also avallable for $\$ 2.00$ each prepaid.

THE SPEC-COM JOURNAL
P.O. BOX H,

VISA
LOWDEN, IOWA 52255

products
returned within 45 days. Payments can be made by check or credit card (no COD).

For information, contact Kantronics, 1202 East 23rd Street, Lawrence, Kansas 66046.
Circle 1301 on Reader Service Card.

CES RepeaterMaker ${ }^{\text {TM }}$

Communications Electronics Specialists, Inc. (CES), has announced the availability of the new CES RepeaterMaker, which allows two mobile radios to be used in a repeater configuration. Features include adjustable hangtime, adjustable time-out timer (TOT), "Roger" or courtesy beep, remote repeat inhibit input and front panel switch, auxiliary PTT relay, inputs for half and full duplex autopatch, connections for CTCSS decoder, LEDs for power, COR, and PTT, all in a compact, attractive case. The CES RepeaterMaker is ideal for use in establishing a primary repeater installation or a back-up repeater utilizing conventional two-way mobile radios.

For more information, contact CES, Inc., 803C
S. Orlando Avenue, Winter Park, Florida 32789.

Circle 1304 on Reader Service Card.

Yaesu in-line SWR meters

Yaesu Electronics Corporation has released two new in-line SWR and Power Meters. The YS-60 measures both average and peak power output, reflected power, and VSWR in the range from 1.6 to 60 MHz . The YS- 500 performs the same measurements covering 140 to 525 MHz range. Three functions provide monitoring of either forward or reflected average transmitter output power for CW, AM, FM, and FSK modes, and VSWR for testing the performance of antennas. The efficient linear circuit design assures accurate measurements with minimum insertion loss over the entire specified frequency range, even at low power levels.

For further information, contact Yaesu Electroncis Corporation, 17210 Edwards Road, Cerritos, California 90701.

Circle /303 on Reader Service Card.

87 STAR for Mac, IBM

Circuit Busters' popular RF and microwave analysis and optimization program, STAR, is now available for the Apple Macintosh and the IBM PC/XT/AT/Jr with floating point coprocessor. The Macintosh version works with either the 128 or 512 K machine and the Imagewriter

For most Ham Rigs from: KENWOOD - YAESU - HEATHKIT AISO DRAKE R-4C/7 LINe, COLLINS $75 S 3 \cdot B / C$, and ICOM (FL44A Twin Only)
Finest 8 -pole Construction ALL POPULAR TYPES IN STOCK CW - SSB • AM
Phone for Information or to Order. VISA/MC or COD accepted.
FOX-TANGO Corp.
Box 15944, W. Palm Bch, FL 33416 Telephone: (305) 683-9587

TechMart

TEST EQUIPMENT SPECIALISTS

Bird Wattmeters
Fluke Multimeters
Hitachi Oscilloscopes
And other quality test instruments.
You'll be glad you called TechMart!
$\begin{array}{ll}\text { TOLL FREE } & 800-554-8305 \\ \text { GEORGIA } & 404-325-0759\end{array}$

- Simplex autopatch and H.F remote base with clear voice messages e
Control your Yaesu FT 757 transcerver with your VHF/UHF portable or mobile - Switch between the H.F remote and the autopatch with DTMF tones - Vorce ID \mathcal{E} all control functions \& HF frequency are voice announced with your programable access codes - Autopatch works on any telephone ing - tome or dial pulse e Call waiting compatability-after beep answer patch! - Automatic redial last number (in dial putse mode) - Ring detect δ automatic voice alert of incoming telephane call - Inactivity timer turns off system (user programable) © Store B H.F memory frequencies + shift VFO's \& change bands - Fast scan δ slow scan + dial up any frequency with DTMF tones all from your handheld VHF/UHF portable or mabile - Use the autopatch or the remote base both for the price of one - Usel defined timing window, access codes call sign e Simple to instail hardware plied © Hoak mic input PTI, spk outputs \& FM squeich connection 3 pin H.F data cable end you are in control - You supply - 1 Commodore 64 or 128 \& 1 disk drive + base station - No additional power supply required • With human voice synthesized by Covox ${ }^{-}$

ENGINEERING CONSULTING Sa3 CANDLEWOOD ST, BREA. CA 92621
[714) 671-2009
TOUCHTONE DECODER KIT

- SSI201 DTMF Receiver - Receive ail 16 DTMF digits - No additional filtering - Output BCD or hex format • Low power [29 ma @ 12V) e Kit includes 358 Mhz crysital, 22 pin IC socket resistor, capacitors, data sheet and schematics

- Compietely wired \& tested \bullet User programable - LED status indicator - Dpen collector output © Control relays, mute audio sures high reliahulity 8 small sizel Fits inside most rigs runs an 12 VOC 35 mal - All 16 digits allow more than 50.000 combinations - Makes excellent private call on busy repeaters! - Use it to turn on audio or sound an alarm - Momentary and latching outpots

TOUCHTONE DTMF MODEL DAD 1
TO RS-232-C 300 to RS-232-C

- Use your computer to decode DTMF touchtones - Receiveall 16 digits as tast as they can be transmitin BASIC to decode multidigit "strings" display digits, sound alarms, observe secret codes, control relays - Simple to use: just provide +1 2 VDC and audia, hook two wires to the AS-232-C serial input on your computer, enter a simple BASIC program and begin to decode - Sample BASIC program and instructions included • bata indicator - Wired and tested

TUNE THE WORLD FROM YO

2 FOUR DIGIT DTMF DECODERS, Model RAP. ${ }^{\text {M }}$ \$
REMOTE-A-PAD

- Audio tones from any source, are converted to solid state switches which control any 16 digit keypad of a radio or other device - Some examples you can control include the Pro-Search ${ }^{-}$ Rotator (rotate beam remotely), Remote controls. ICOM IC- 701 or ICOM IC-211 when using the AM-2 controller: Kernwood 7950. IC751. Azden
PCS 4000 handhelds such as Yaesu FT-208: FT-70B: ICOM IC-02AT, and many more - Two (four-digit) pro-

ENGINEERING CONSULTING 583 CANDLEWOOD ST, BREA CA S2621 | [714] 671-2009 |
| :---: |
| ICOM IC-02AT USER'S |
| "AUDIO BLASTER MODULE |
| 1000's of Now Available for |
| Satistied Customers |

- Modute installs inside the radio in 10 minutes - Boost audio to nearly one watt) © Low power drain (4 ma atand-by) - Complete step-by-step instructions included e Corrects the LOW audio problemt e Drive external speakers to full volume even signals
with low deviation! PLUS 16 DIGIT KEYPAD CONTROL grammable access codes are used to operate relays or other on/orf functors and momentary plus steady state decoder outputs are provided e All CMOS low power drain (30 ma). S.S. 201 Decoder - Hook eight wires (4 rows and 4 columns) in parallel with the existing keypad of the radio you wish to control remotely. Connect and you are in control e The dual 4 digit decoders will turn your links on and off using your programmable ac cess code

Don't buy from Hamtronics . . .
 Unless you want the best possible equipment at the lowest possible price! !!

The "wheeler-dealer" is back and he's beating everyone else's "deals."
We all know there's no such thing as a free lunch so How Can We Do This?

- We don't run alot of ads featuring sale items
- We don't spend alot of money on full page ads
- We don't have sales on just the fastest selling products
- We don't short cut you on service. We are a factory warranty repair facility for everything we sell!
- We don't mail out free catalogs
- We don't have a free WATS number.

You and every other Ham customer is paying for all these do-dads and sales gimicks.
Hamtronics puts the savings into your pocket.
Hamtronics guarantees to meet or beat any advertised price on every item we sell.

Hamtronics Has It All!

Let Hamtronics be your Ham Radio equipment dealer. We're celebrating our 35th year in the Ham business at the same location.

ICOM DAY JANUARY 25, 1986

A DIVISION OF TREVOSE ELECTRONICS 4033 BROWNSVILLE RD., TREVOSE, PA 19047 (215) 357-1400

SPECIAL SALE - SAVE \$5 EACH
 Have a name - but need the Call Sign? Traveling - and want to meet local Hams?

By Name and Call 583 pages
1985 1986 Atratent Hactio

No frills directories of over 462,000 U.S. Radio Amateurs. $81 / 2 \times 11$, easy to read format.
NAME INDEX $-\$ 25.0 \sigma \$ 19.95$
GEOGRAPHICAL INDEX $-\$ 26.00 \$ 19.95$
BUY BOTH SPECIAL \$35.95
Add $5: 150$ sheppergto all orders

Greenville, NH 03048

Codes are easily changed with jumpers; there are no program plugs to replace or eproms to burn. For each function, you have the choice of using a high-security four-digit password or a convenient single-digit command. The TD-2 can be used with any tone source, including radio receivers and telephone lines (with autopatch board). When used with an autopatch, the TD-2 has a built-in " 0 " and " 1 " toll call restrictor at no extra charge. A data strobe output, used with the autopatch module, prevents retransmission of confidential control tones.

The TD- 2 is suitable for remote control of repeaters, autopatches, and subaudible tone decoders; for selective calling, industrial control, telemetry, computer interface, and other applications. LEDs indicate latch circuits automatically reset to default values on power up. The size of the double-sided PC board is only 3×5 inches, so it fits in easily with other equipment.

The TD-2 sells for $\$ 110$ in kit form and $\$ 160$ wired and tested. Full documentation is provided with helpful application data.

A complete 40 -page catalog of Hamtronics products is available for $\$ 1.00$ from Hamtronics, Inc., 65-F Moul Road; Hilton, New York 14468 9535. (For overseas mailing, please send $\$ 2.00$)

new signalling concept

A revolutionary new selective calling/selective linking system has been developed by Kenwood for Amateur Radio use. Called Digital Channel Link, or DCL for short, its many features include automatic connection, frequency recall, vacant channel location, and selective calling of individual transceivers or groups of transceivers.

Here's how it works: the DCL system searches for an open channel, remembers it, returns to the the original frequency and transmits control information to the DCL-equipped station that switches both transceivers to the open channel. High speed digital information allows the whole process to take only an instant.

In addition to this selective linking feature, DCL can also be used for selective calling, similar to Kenwood's DCS system: a five-digit code group is sent which opens squelch on a DCS transceiver with the matching code. Additionally, a six-character burst of ASCII is sent. Station call signs are normally programmed into this ASCII portion. The CD-10 Call Sign Display unit, which can be used with any receiver, may be used to display the transmitted DCS or DCL (ASCII) call sign. The CD-10 can store up to twenty incoming call signs for monitoring and logging purposes.
The digital Channel Link systern should add more convenience to repeater operations. Using DCL, it becomes a simple matter to QSY to an open simplex channel after making initial contact via repeater.

For details, contact Trio-Kenwood Communications, 1111 West Walnut Street, Compton, California 90220.

High rformance Vhf/Uhf preamps

Receive Only	Freq. Range (MHz)	$\begin{aligned} & \text { N.F. } \\ & \text { (dB) } \end{aligned}$	$\begin{aligned} & \text { Gain } \\ & \text { (dB) } \end{aligned}$	1 dB Comp. (dBm)	Device Type	Price
P28VD	28-30	<1.1	15	0	DGFET	\$29.95
P50VD	50-54	<1.3	15	0	DGFET	\$29.95
P50VDG	$50-54$	<0.5	24	+12	GaAsFET	\$79.95
P144VD	144.148	<1.5	15	0	DGFET	\$29.95
P144VDA	144-148	<1.0	15	0	DGFET	\$37.95
P144VDG	144-148	<0.5	24	+12	GaAsFET	\$79.95
P220VD	220-225	<1.8	15	0	DGFET	\$29.95
P220VDA	220-225	<1.2	15	0	DGFET	\$37,95
P220VDG	220-225	<0.5	20	+12	GaAsFET	\$79.95
P432VD	420-450	<1.8	15	-20	Bipolar	\$32.95
P432VDA	420-450	<1.1	17	-20	Bipolar	\$49.95
P432VDG	420-450	<0.5	16	+12	GaAsFET	\$79.95
Inline (rf switched)						
SP28VD	28-30	<1.2	15	0	DGFET	\$59.95
SP50VD	$50-54$	<1.4	15	0	DGFET	\$59.95
SP50VDG	50-54	<0.55	24	+12	GaAsFET	\$109.95
SP144VD	144-148	<1.6	15	0	DGFET	\$59.95
SP144VDA	144.148	<1.1	15	0	DGFET	\$67.95
SP144VDG	144-148	< 0.55	24	$+12$	GaAsFET	\$109.95
SP220VD	220-225	<1.9	15	0	DGFET	\$59.95
SP220VDA	220-225	<1.3	15	0	DGFET	\$67.95
SP220VDG	220-225	<0.55	20	+12	GaAsFET	\$109.95
SP432VD	420-450	<1.9	15	-20	Bipolar	\$62.95
SP432VDA	420-450	<1.2	17	-20	Bipolar	\$ $\$ 79.95$
SP432VDG	$420-450$	<0.55	16		GaAsFET	\$109.95

Every preamplifier is precision aligned on ARR's Howlett Packard HP8970A/HP346A stato-ol-the-art noise figure meter. RX only preamplifiers are for receive applications only. Inline preamplifiers are rf switched (for use with transceivers) and handie 25 watts transmitter power. Mount Iniline preamplifiers between transceiver and power amplifier for high power applications. Other amateur, commercial and special preamplifiers available

In the 1.1000 MHz range. Please include $\$ 2$ shipping in
U.S. and Canada. Connecticut residents add $7, \% \%$ U.S. and Canada. Connecticut residents add $7.1 \% \%$ sales tax. C.O.D, orders add \$2. Air maill to foreign countries add 10%. Order your ARR Rx only or inline preamplifier today and start hearing like never before!

Advanced Receiver Reseorch

Box 1242 • Burlington, CT 06013 • 203 582-9409

ㄷ:1

flea

RATES Noncommercial ads $10 \$$ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.
HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitais) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

SCHEMATICS: Radio receivers 1920s/60's. Send brand name, model No.

RADIO FREQUENCY SPECTRUM CHART made specifically for Amateur, shortwave listeners, and scanner enthusiasts. 16 " $\times 20$ " FULL COLOR poster suitable for framing. Only $\$ 4.50$ plus $\$ 1.50 \mathrm{~s} \& \mathrm{~h}$. Schools and others please write for quantity discount. Rover Printer, KB6DYM, 2135 C Columbia, San Diego, CA 92101.

BACK ISSUES HR Oct 71 thru Dec 81. 72-77 in binders. \$65 VE3BJY, B. Brenko, 2 Vista Dr., Foothill, Ontario LOS 1E0

DIGITAL AUTOMATIC DISPLAYS. All transceivers. Six $1 / 2^{\prime *}$ digits. $5^{\prime \prime}$ wide $\times 1-1 / 4^{\prime \prime}$ cabinet! Send $\$ 1.00$ for information. Receive a $\$ 25.00$ discount. Grand Systems, POB 2171, Blaine, Washington 98230.

WANTED: Service and operating manual for Gonset GSB-100 model 3233 transmitter. Also wanted a Viking Challenger transmitter that is complete. Fadden, Box 1223, Blaine. WA 908230.

THE GOOD SAM HAMS invite RV operators to check in the Good Sam Ham net 14.240 Sundavs 1900 Z also 3.880 Tuesdays at 2359Z. Net control N5BDN, Clarksville, IN

Foreign Subscription Agents for Ham Radio Magazine

Ham Radio Austria	Canada
Karin Ueber	Send orders 10
Postlact 2454	Ham Radio Magazine
D. 7850 Leerrach	Greenville. NH 03048 USA
West Germany	Prices in Canadian tunds
Ham Aadic Belgum Stereohouse Brusselsesteanweg 416 E-9218 Gent Belgium	$3 \text { yrs } \$ 7540$
	Ham Aadio lialy
Ham Radto Holland	Via Manago 15
Postbus 413	1 -20134 Milano
Nl .7800 Ar Emmen	Itaty
Hestand Ar Emmen	
$\text { Box } 2084$ S. 19402 Upplands vasby Swedem	Ham Radio Switzerland Karin Ueber Posttach 2454 D. 7850 Loerrach West Germany
Ham Radio France SM Electronic 20 bis, Ave des Crarions F- 89000 Auxerre France	
	Ham Radio England
Ham Radio Germany	Alma House
Postiach 2454	Cranborne Road
	Potters Bar
D.7850 Loerrach	Herts ENS 3JW
Wesl Germany	England

OLD RADIO transcription discs wanted. Any size, speed. W7F1Z, Box 724 HR, Redmond, WA 98073-0724.

RTTY-EXCLUSIVELY for the Amateur Teleprinter. One year $\$ 10.00$. Beginners RTTY Handbook $\$ 8.00$. PO Box RY, Cardiff, CA 92007.

UHF PARTS. We stock GaAs Fets, Trimmers, and many of those impossible to find parts for the UHF builder. For exam ple: MGF 1202 at $\$ 10.00$, Finger Stock at $\$ 7.50$ per $16^{\prime \prime}$ strip. Taylor, MI 48180

IMRA, International Mission Radio Association heips mission aries. Equipment loaned. Weekday net, $14.280 \mathrm{MHz}, 2.3 \mathrm{PM}$ Eastern. Eight hundred Amateurs in 40 countries. Brother Frey 1 Pryer Manor Road, Larchmont, New York 10538.

RUBEER STAMPS: 3 lines $\$ 4.50$ PPD. Send check or MO to G.L. Pierce, 5521 Birkdale Way, San Diego, CA 92117. SASE brings information.

ELECTRON TUBES: Receiving, transmitting, microwave... all types available. Large stock. Next day delivery, most cases. Daily Electronics, PO Box 5029. Compton, CA 09224. (213) 774-1255.

IBM-PC RTTY/CW CompRtty II is the complete RTTY/CW program for the IBM-PC and compatitles. Virtually any speed ASCII, BAUDOT, CW. Text entry via built-in editor! 10,000 character transmit/receive buffers. Adjustable split screen dis play. Instant mode/speed change. Hardcopy, diskcopy, break in buffer, select calling, text file transfer, customizable full screen logging, 24 programmable 1000 character messages. Now with WRU (simple mailbox). Ideal for MARS and traffic handling Requires 128k PC, XT, AT, PCjr, PC-DOS, serial port, RS-232C TU. $\$ 65$. Send call letters lincluding MARSI with order David A. Rice, KC2HO, 7373 Jessica Drive, North Syracuse, NY 13212

CUSTOM MADE EMBROIDERED PATCHES. Any size, shape, colors. Five patch minimum. Free sample, prices and ordering information. Hein Specialties, Inc., Dept 301, 4202 N. Drake, Chicago, IL 60618.
RECONDITIONED TEST EQUIPMENT $\$ 1.25$ for catalog. Walter, 2697 Nickel, San Pablo, CA 94806
PRINTED CIRCUIT BOARDS and kits for QST articles. Cal or write for information. A\&A Engineering, 7970 Orchid Drive, Buena Park, CA 90620. (714) 521-4160.
PACKET/ASCIIBAUDOT/CW for IBM-PC. SASE to: Emile Alline, 773 Rosa, Metairie, LA 70005.
WANTED NC400 receiver. Any condition. W2PUA, 112 Tilford Road, Somerdale, NJ 08083. (609) 783-4175

CABLE TV CONVERTERSIDESCRAMELERS. Guaranteed lowest prices in US. Jerrold, Hamlin, Zenith-M Many others. Lowest dealer prices! Orders shipped within 24 hours! Complete illustrated catalog, \$2.00. Mastercard, VISA, COD accepted Pacific Cable Co., Inc., 7325-1/2 Reseda Blvd, \#1011. Reseda, CA 91335. (818) 716-5914.

DISCOUNT CABLE TELEVISION EQUIPMENT. We have IN STOCK complete systems for Hamlin, Oak, Jerrold and other cable systems. Please send for a free information package - it could save you big money on vour purchase of these and other CATV iterns. Easy View, PO Box 221. Arlington Heights, IL 60006 (312) $952-8504$. Ask for Rudy Valentine.

HAPN (Hamihon and Area Packet Network) announces the availability of a packet radio terminal node controller (TNC) on a card that plugs into a slot in an IBM-PC or compatible computer. Card contains terminal node controller and 1200 baud 202-type modem, Card available as bare board ($\$ 75$ US) or assembled
and tested unit ($\$ 199$ US). AX. 25 software included with each order. For order outside N.A. please add $\$ 3.00$. For information/orders: HAPN Box4466, Station D Hamilton, Ontario Canada L8V 4S7.

CHASSIS and cabinet kits. SASE K3IWK, 5120 Harmony Grove Road, Dover, PA 17315

ELECTRON TUBES Radio, TV \& Industrial Types - Huge Inventory. Send for 80% off tube listing. Call Toll Free (800) 221-5802 or write Box HR, Transleteronic, Inc., 1365 39th Street, Brooklyn, NY 11218 (718) 633-2800.

WORLD TOP BAND Frequency Allocations Listing. Handy "Top Band" operating and contains all currently available CW and SSB allocations for countries on ARRL DXCC list. (317 total, 10 no authorization, 61 no information available). Also includes OST sent/received column for keeping track of cards. $\$ 5.50$ USA, Canada and Mexico $\$ 7.50$ elsewhere. Dennis Peterson N7CKD, 4248 A Street SE, Space 609, Auburn, WA 98002.

WANTED: Heath Curve Tracer IT-3121 kit/assembled. Mission School needs 10 units. Call Manila, P.1. 832-1773 or write Mis sion POB 1651 MCC Makati MM. P.I. ${ }^{4}$ FM3 SALE: HW101 with power supply- manual. Best offer over 150 Single bander (20 m) offer. Both prot. wired. Excellent condition. W2PUA, 112 Tilford Road, Somerdale, NJ 08083. (609) 783-4175.

CAPS with call/handle. Mesh or foam backs. 12 colors/white fronts; brown/tan. Mens/ladies styles. $\$ 7.50$ net. CERAMIFUN 315-11th Street, Ramona, CA 92065 (619) 789-4730. Visa/MC accepted. Quantity rates to club:

FOR SALE: Knight 50W transmitter. Matching VFO. 10-80 meters. $\$ 75.00$. Collins Type 32 V Transinitter $\$ 250.00$. Donald M. Cox, 318 Park Elvd., Orange Cove, CA 93646. (209) 626-4219.

ELECTRONIC COMPONENTS Resistors, any value/quantity (minimum 20/value). $1 / 4$ watt $\$.01 @, 1 / 2$ watt $\$.02 @-\$ 1.25$ shipping. Quantity discounts, $1,000+$. Send wattage(s), value(s) quantity(s) and remittance. Capacitors-50V Cerame Disk, al values \$.10@, minimum order $\$ 1.00-\$ 1.25$ shipping. 342-9171.

CLEANING out Ham Shack. 35 vears of receivers, transmitters, accessories, tubes and parts. Send SASE for 6 page list.
W9VZR, 4627 North Bartlett Avenue, Milwaukee, WI 53211.

REPEATER FOR SALE: Spectrum model SCR-1000 2 meter $2-1 / 2$ years old, freshly factory reconditioned and upgraded. John L. Hackman, WB4VVA, PO Box 194, Mount Pleasant, MI 48858.

QST July 1985 issue wanted. Prof. G. Felser, Trazerberggasse 5, 1130 Vienna, Austria

CIRCUIT BOARDS guaranteed lowest quotes. Single and dou ble sided boards. Prototypes through large production quantities. Mail specifications for quotes. Hobbyists: print your own circuit board. Kits of all sizes, low prices. Basic kit $\$ 3.00$ materials or two 3"x4" boards (included) or SASE for catalog to T.O.R.C.C.C. Electronics, Box 47148, Chicago, IL 60647 (312) 342-9171.

2 METER AMP KITS: 8877 legal limit kit \$395. 3CX800A7 900W kit $\$ 325$. Also HV power supplies, CX600N relays, parts and EME newstetter. SASE for catalog. 2 Meter EME Bulletin, 417 Staudaher St., Bozeman, MT 59715

CABLE TV CONVERTERS \& EQUIPMENT: Plans and parts Build or buy. SASE for information. C \& D Electronics, PO Box 1402, Dept. HR, Hope, AR 71801.

RIW-19 432 MHz beams by K3IPW. SASE for information.

COMING EVENTS

Activities - "Places to go
CALIFORNIA: Flea Market/Boneyard Sale. Foothill College, Los Altos Hills. March-Sept. 2nd Saturday of every month. 7 AM Sellers. 7:15 AM buvers. Talk in $145.27(-)$ or 147.570 simplex. FCC exams (408) 255-9000.
GEORGIA: The 7th annual Lake Hartwell Hamfest, sponsored by the Anderson, Hartwell and Toccoa Amateur Radio Clubs May 17 and 18, Lake Hartwell Group Camp, Hwy 29, Hartwell. Free admission, free camping and free flea market space. Activi ties for the entire family. For information: Merrick A. Counsell, W28NS, 215 Nottingham Way, Anderson, SC 29621.

ILLINOIS: The Starved Rock Radio Club Hamtest, June 1 , Princeton. Same place as last year. SASE please for complete egistration materials, map, etc. SRRC, W9MKS, RFD 1, Box 171, Oglesby, IL 61348 (815) 667-4614
OHIO: The Medina County Hamfest, May 11. Medina County Community Center Building, 735 Lafayette Rd., Medina. Sponsored by the Medina 2 Meter Group. 8 AM to 2 PM. Building and flea market setup 6 AM. Tickets $\$ 3.50$ advance, $\$ 4.00$ at the door. Tables $\$ 6.00$. Flea market space $\$ 4.00$. Tak in on Medina, Óhio 44258. (216) 725-4492 or (216) 769-3033.

ILLINOIS: The Moultrie Amateur Radio Klub Hamfest, April 20 Coles County Airport, Mattoon. Contact MARK, PO Box 79 Coles County Airpo
Sullivan, IL 61951.

CALIFORNIA:FCC exams, Novice-Extra. Sunnyvale VEC ARC (408) 255-9000 24 hour. 73, Gordon, W6NLG, VEC

OHIO: The all new 17th Annual $\mathrm{B}^{*} \mathrm{~A}^{*} \mathrm{~S}^{*} \mathrm{H}$ - New Location, new entertainment, new food - will be held on Friday night of the Hamvention, April 25, 1986. The new location is in the the same location as the Hamvention) starting at 7 PM. There the same loca odmission charge and free continuous entertainment Food is no admission charge, and free conimuous entertaids and many thers. Stay right at HARA when the Hemvention closes on Frithers. Stay nght aeet your friends and join us tor an ovening of fun and entertainment Spensored by the Miami Valley FM Association, POBox 263, Dayton, Ohio 45401.

OKLAHOMA: The Great Plains ARC's 5th annual Northwest Oklahoma Eyeball \& Swapmeet. Sunday, April 13, 9 AM, Mooreland. Admission $\$ 2.00$ at door. Dealer and swap tables available no charge. VE tests Saturday, April 12. Campsites avail able. Talk in on 147.72/12,146.13/73 and 146.52 simplex. For information: (405) $994-5394$ or $994-5453$. Write: NR5L, Gordon Richmond, Rt. 1, Box 12, Mooreland, OK 73852 or N5CCV, Get ald Bowman, Box 356, Mooreland, OK 73852.

COLORADO: The Aurora Repeater Association will hold its annual ARA Swapfest, Sunday, April 27, National Guard Armory, 55 S. Potomac, Aurora, 8 AM to 3 PM. Tables, raffle, FCC exams. For information: Aurora Repeater Assoc., PO Box 31043. Aurora, CO 80041 or call John(303) 344-1915',

INDIANA: The third annual Columbus Amateur Radio Club Swapfest, Saturday, April $5,9 \mathrm{AM}$ to 5 P M, 4 H Fairgrounds, SR 11 South, Columbus. Talk in 146.79 repeater. For reservations: Chuck Roberts, 2950 S. Lake Drive, Columbus, IN 47203

NEW JERSEY: TCRA Hamfest Tri-County Radio Association, Sunday, May 4, Passaic Valiey Community Center, off Valley Road, Stirling. 9 AM to 3 PM. Tables $\$ 7$. AC $\$ 10$. Registration \$2. Limited tailgating by reservation only. All reservations W2EUF, Dick Franklin, Box 182. Westfield, NJ 07090. (201) 232-5955.

OHIO: The Portage Amateur Radio Club's Hamfair, Sunday May 18, Randolph Fairgrounds, Ravenna. Gates open 6 AM for dealers. 7:30 for public. Indoor/outdoor flea market. ARES, ARRL, DX, packet and computer torums. Tickets $\$ 3.00$ advance, $\$ 3.50$ at the gate. Mobile check in $144.79 / 145.39$ repeater. For tickets send check and SASE to PARC, c/o Joanne Solak,
KJ30/8, 9971 Diagonal Road, Mantua, Ohio 44255 . For information call (216)274-8240

LOUISIANA: BRARC Hamfest, May 3 and 4, Baton Rouge. Free admission. VE exams Saturday and Sunday, 8:30 AM. 30 day advance registration. Send SASE, Form 610 and check for $\$ 4.25$ payable to ARRL/VEC to George Perry. W5LVX, 17424 Lady Constance, Greenwell Springs, LA 70739 . Some walk-ins. For further info SASE to Rick Pourciau, NV5A, 879 Castle Kirk Baton Rouge, LA 70808.

ARKANSAS: The Northwest Arkansas ARC will hold its 6th annual Hamfest, Saturday, May 3, Rogers Youth Center, 315 W. Olive Street, Rogers, AR. 8 AM to 4 PM. Exhibitors and flea market tables $\$ 2.00$ per space. Doors open 6 AM for exhibitors only. General admission free. Talk in on 16/76,63/03 and 52 simplex. For more information: Roy Milliren, AF5W, 2014 S. 16th Street, Rogers, AR 72756.

CALIFORNIA: The Fresno Amateur Radio Club will hold its 44th annual Hamfest, May 2, 3 and 4. Airport Holiday Inn. FCC exams will be given. DX and Emergency programs. Forums and demonings. Fresno ARC, PO Box 783, Fresno, CA 93712. (209) 268-6314.

INDIANA: The Putnam County Amateur Radio Club's 4 th annual Hamfest and Auction. Aprii 12, Putnarn County Fairgrounds, lic 8:00 AM. Auction 1:00 PM Admission $\$ 3.00$ Children under 12 free. Flea market tables $\$ 3.00$ each. Your tables $\$ 2.00$ each. Talk in 147.33/93. For information or table reservations SASE to Kent Douglas, K9JCR, RR4 Box 586, Greencastle, IN 46135 (317) 672-8237 or Nick Aubrey, N9FCB, RR2, Box 592, Greencastle, IN 46135 (317) 653-5290.

MISSOURI: The PHD Amateur Radio Assn.'s annual State ARRL Convention, April 11-13, old Kansas City Airport, north of downtown KC. Registration $\$ 4.00$ (good for all 3 days). Swap tables $\$ 10.00$, includes one registration. Saturday night banquet $\$ 10.50$ by advance registration, VE exams. Talk in on 34/94 repeater. For information/registration: PHD Amateur Radio Assn, Inc., PO Box 11, Liberty, MO 64068-0011 (816) 781-7313 or 452-9321.
WISCONSIN: The Ozaukee Radio Club's 8th annual Cedarburg Swapfest, Saturday, May 3, 8 AM to 1 PM, Circle B Recreation Center, Highway 60 and County I, Cedarburg. Admission $\$ 2.00$ advance, $\$ 3.00$ at the door. 4^{\prime} tables $\$ 3.00$ each. Sellers setup 7 AM . For tickets, table reservations or more info SASE to ORC Swapfest, 101 E. Clay St., Saukville, WI 53080.

NEW YORK: The Suffolk County Radio Club's Indoor/Outdoor Flea Market, Sunday, May 4, 8 AM to 3 PM, Republic Lodge No. 1987, 585 Broadhollow R Road, Melville, Lí. General admission $\$ 2.00$. Wives and children under 12 free. Indoor tables $\$ 7.00$. Outdoor space $\$ 5.00$. Each includes one admission. Talke in on 144. a61/145.21 and 146.52 . For more information: Bill Sullivan, N2ETG (516) 689-9871 evenings
NEW YORK: Manhattan's Quarterly Computer Show and Electronic Flea Market, April 5, 10 AM to 4 PM, Christ Church Auditorium, Park Avenue and East 60th Street. And, again on April 26, 10 AM to 4 PM, St. Anthony's Church Community Hall Sullivan and Houston Streets. Admission to each show $\$ 2.50$ For more information: Mr. Johnson. Public Domain Software Copying Company, 33 Gold Street, New York, NY 10038. (212) 732-2565.

NORTH CAROLINA: Raleigh, the City of Oaks and the Raleigh Amateur Radio Society presents the 14th annual RARS Ham fest, NC State ARRL Convention and Computer Fair, Jim Gra ham Building, NC State Fairgrounds, Hillsborough Street. Advance registration $\$ 3.50$ until April 7. $\$ 5.00$ at the door. Flea FCC exams by pre-registration prior to April 1 C) $\$ 6.00$ each FCC exams by pre-registration prior to April i. Contact John Johnson, WM4P direct. Free wetcoming party in Graham Bulld ing Saturday 88 For more information: Rollin Pansom NF4P 2447 Fairway Drive, Raleigh, NC 27603 (919) 779-5021

MASSACHUSETTS: The 12th annual ECARA Flea Market April 27, 10 AM to 2 PM, 200 Sportsmen's Club, Sutton Road, Webster. Tables $\$ 5.00$ advance; $\$ 7.00$ at the door. Admission $\$ 2.00$. Free parking. For information: Tom Francis, KB1SP (617) 743-7283. Dick Spahi, K1SYI (617) 943-4420. Don Amirault, K1APE (203) 923-2727

MASSACHUSETTS: The Montachusett Amateur Radio Associ ation will hold an indoor flea market, Saturday, April 26, Knights Admission $\$ 1.00$. Reserved tables $\$ 8.00$ advance. $\$ 10.00$ at the door. Refreshments and free parking. Doors open 8 AM for sellers. Talk in on $144.85 / 5.45$ and 52 simplex. For table reservations send check payable to MARA, c/o Jim Beauregard, KB1AY, 7 Mountain Avenue, Fitchburg, MA 01420

MASSACHUSETTS: Tailgate High Tech, computer and Ama teur Radio Flea Market Sunday, April 20, 10 AM to 4 PM ,

Albany and Main Street, Cambridge. Admission \$1.50. Sellers $\$ 5$ per space includes 1 admission. Setup 9 AM. Talk in 146.52 and 449 2/444 $2 \mathrm{~W} 1 \times \mathrm{M} / \mathrm{R}$. For space reservations or further information: Jamie (617) 262-5090 or 253-2060. Sponsored by the MIT Electronics Research Society and W1XM/R

PENNSYLVANIA: The 4th annual Southern Aleghenies Ham fest, Sunday, April 13, 7 AM to 4 PM, Bedford County Fair grounds, Bedford. Sponsored by the Horseshoe Radio Club Blue Knob Repeater Assn, Bedford Co. ARC, Mountain ARC and Somerset Co. ARC. Admission $\$ 3.00$. Tailgating available Reserved inside tables. Refreshments and a consignment information: Gay Rembold, W3DFW 949 Winited Rd, Cumberland, MD 21502 (301) 724-0674 or (814) 445-7486.

NEW HAMPSHIRE: Deerfield. The Hosstraders will present their Spring Tailgate Swapfest, Saturday, May 10 at Deerfield, NH Fairgrounds. Admission $\$ 2$ per person; no extra charge for PM Fiday Profit be fit Shrins' Hospitai Last year's gift:
 11,754.46. Talk-in 146.40-1 W1.00. New England's biggest Harm WA1IVB. For map SASE to WA1IVB, RFD Box 57, West Baldwin ME 04091

MASSACHUSETTS: The MIT UHF Repeater Association and the MIt Radio Society offer monthly Harm Exams. All classes Novice to Extra. Wednesday, April 23, 1986,7 PM, MIT Room -134, 77 Mass Ave, Cambridge, MA. Reservations requested $253-5820 / 646$ in adance. Contact Ron Hoffmann (617) \$4.00. Bring copy of current license 2 forms of picture ID and completed form 610 (available from FCC in Boston. 223-6609)

OPERATING EVENTS

"Things to do

ARMED FORCES DAY: In recognition of the 37th anhiversary of this event, Amateur Radio Station W4ODR, located Northside aboard Naval Air Station Memphis, Millington, Tennessee, will be operated by sailors and Marines on Saturday, 17 May from $1400 Z$ to 2202 . For information on W4ODR, NAS Mem KA4FAL (901) 872.2007

QRP ARCI Spring CW Contest, April 19 to April 20. For infor mation Eugene Smith, KA5NLY, Chairman, POBox 55010 , Lit le Rock, AR 72225.
a TLANTA, GA: The Metro Atlanta Telephone Pioneers ARC will operate W4OTA, April 18-20 to help celebrate A Taste of Atlanta 1986. Telephone Pioneers nationwide are encouraged MATPARC Taste of Atlanta, John C. Parker PO Box 54017 Atlanta, GA 30308

Groton, CT: The Radio Amateur Society of Norwich (RASON) will operate Croaker Memorial Special Event Station KA1IFG from 1700ZApril 19 to 1700Z April 20 from the submarine USS Croaker to commemorate the 42 nd anniversary of its commis soning. Frequencies: SSB-3.890. 21.290. CW--3.730, 7.130 11.130. OSL with SASE to RASON, PO Box 903,Norwich, CT 06360.

SCHOLARSHIP AWARD: The Atlanta Radio Club is pleased to announce its 1986 scholarship awards program. Two sums of $\$ 1250.00$ each will be awarded to the winners. Applicants must be licensed Radio Amateurs graduating from high school and ntering an accredited college or university as Freshmen for the ship, ham radio achievements and financial need. For application blanks write: Phil Latta, W4GTS, 259 Weatherstone Parkway, Marietta, GA 30067.

THE FOUNDATION FOR AMATEUR RADIO, INC., a nonprofit organization with headquarters in Washington, DC, plans to award 21 scholarships for academic year 1986-87. Licensed Radio Amateurs may apply for these awards if they plan to pursue a full-time course of studies at an accredited university, college or technical school. For additional information and application form send letter prior to May 31, 1986 to FAR Scholarships, 6903 Rhode Island Avenue, College Park, MD 20740.

Derby and District Amateur Radio, incorporating Derby Wireess Club 1911, will be celebrating its 75th anniversary during 986. The Society plans at least one event per month through out the year each from a different location with the City of Derby The callsign to listen for will be GB3ERD

1986 marks the 50th anniversary of the Greater Cincinnati Ama eur Radio Association. A number of special events are planned Watch for announcements here

TIF CHARGE YOUR CLASSIFIED ADS

 to your MC or VISA, write or call ham RADIO MAGAZINE Greenville, NH 03048(603) 878-1441

> INSTALL YOUR OWN SATELLTE SYSTEM G SAVE BIG \$!

DRAKE, CHAPARRAL, DX, HOUSTON TRACKER, PANASONIC, STS, TOKI, NIDEN, RAY DX, LAUX, PARACLIPSE, ECHO, WINEGARD, PRECISION SPACEMATE.

COMPLETE SYSTEMS OR COMPONENTS.
CALL FOR PRICE LIST, OR QUOTES.
1-800-468-3478 IN MISSOURI
1-314-838-0364

SPRING SUNSPOT SALE! SAVE $\$ 700$

COMPUTERIZED DX EDGE

Generate your own Greyline display.
Xantek has adapted their best selling DX Edge to the computer world and it comes at a very reasonable price. This computerized operating aid brings into your ham shack the ability to know and predict when arid where $D X$ is going to appear. When you are using the program, the computer will automatically update the information as the sun progresses across the face of the Earth. To make the computerized DX Edge even easier to use, the display is keyed to the DXCC list and the 40 CQ zones. Disk and documentation included. This is some thing you've Got to have! (c) 1985
IXN-C64 (For Commodore C-64)REG 34.95

The monthly magazine with a natural blending of iwo popular hobbies - Ham Radio and Computers

* Articies on Ham Radio \& Most Personal Computers
* Hardware \& Soltware Reviews
* Various Computer Languages
* Construction Articles
* Much Much More
"...received my moneys worth with just one issue..."
-J. Trenbick
"...always stop to read CTM, even though most other magazines I receive (and write for) only get cursory examination..."
-Fred Blechman, K6UGT
U.S.A
$\$ 15.00$ for 1 year
Mexico, Canada
$\$ 25.00$
Foreign $\$ 35.00$ (land) - $\$ 55.00$ (air)
(U.S. funds only)

Permanent (U.S. Subscription) \$100.00
Sample Copy

Circulation Manager
1704 Sam Drive
Birmirigham. Alabama 35235
Phone 205/854-0271

Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.
- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.

- Popular Modes In Use:

 SSB, CW, RTTY, SSTV, Packet
- Full Operating Privileges

 open to Technician Class licensee or higher.Other AMSAT Membership Benefits:

Newsletter Subscription:
Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software

Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator
Support, Forum Talks

Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $\$ 24$ a year, $\$ 26$ outside North America. VISA and MC accepted.

AMSAT
 P.O. Box 27 Washington, DC 20044
 301 589-6062

THEY'RE ALL NEW FOR 1986!

Significant changes for 1986 mandate that all hams get both the North American and International Callbooks. DX'ers and Contester's note - Having both books is the only way you'll have all Foreign Amateur listings.

NORTH AMERICAN CALLBOOK

The old US Callbook has been expanded and now contains the listings of all hams in North America plus Hawaii and US Possessions. This improved operating aid has all the latest calls and OTH information available at press time and will be an invaluable reference guide. With calls "from Panama to Greenland, every ham should have a copy of this new book in their shack 1985.

CB-US86 Softbound \$21.95
Order Both and SAVE. Reg. Price $\$ 42.90$

INTERNATIONAL CALLBOOK

The Foreign Callbook is no more! In its place. the new International Callbook includes all Amateurs outside of the North American continent. All the latest callsigns and QTH's are listed to help ensure you get that prized OSL card. Universally recognized as the source of information. Order your's today 1985
CB-F86 Softbound \$20.95

■CB-86 Solbound

SPECIAL PRICE SAVE \$2.95

Please enclose $\$ 3.50$ to cover postage and handling.

ramalion BOOKSTORE
 GREENVILLE, NH 03048

VISA

HAZER YOUR ROHN 25 G Tower

- Never climb your tower again with this elevator system
- Antenna and rotator mount on HAZER, complete system trams tower in verticle upright position
- Safety lock system on HAZER operates while raising-lowering \& normal position. Never can fall
- Weight transferred directly to tower Winch cable used only for raising \& lowering Easy to install and use
- Will support most antenna arrays
- High quality materials $\&$ workmanship - Salety - speed - convenience - smooth travel
- Complete kit includes winch, 100 ft of cable, hardware and instructions
Hazer 2-Heavy duty alum, 12 sq ft load $\$ 297.00 \mathrm{ppd}$. Hazer 3 -Standard alum 8 sq ff load 213.00 ppd . Hazer 4-Heavy gaiv steel. 16 sq it 10 ad 278.00 ppd. Ball thus! bearing TB- 25 tor any of above 42.50 ppd .
As an alternative, purchase a Martin M-13 or M-18 aluminum tower engineered specifically for the HAZER system, or a truly selt-supporting steel tower

GLEN MARTIN ENGINEERING INC. P.O. Box H 253 Boonville, Mo. 65233 816-882-2734(4)

The Electronic Orphanage

427.3 Amherst Street, Suite 174 Nashua, NH 03063 CS2032
Phone: (603) 882-8740 - B8S: (603) 882-9312 8/N/1 Our orphans include
Weller TC202 or Ungar 9200 soldering stations, refurbished, 30 day puarantee $\$ 25.00$.
Lisa 2 systems, include 512 K memory, keyboard, mouse, 2-serial ports, 1-parallel port. New $\$ 1200$, Demo $\$ 1100$. Used $\$ 1000$
MAC XL (same accessories as Lisa 2 plus 10 Mb hard disk). New $\$ 2600$, Demo $\$ 2500$, Used $\$ 2400$.
Accessories for above systems:
512K memory card $\$ 350$ NEW
5 Mb PROFILE disk $\$ 450$ USED
10 Mb PROFILE disk $\$ 999$ USED, $\$ 1200$ NEW
Parallel interface $\$ 160$ NEW
Lisa 7/7 V3 $1 \$ 350$ NEW
FACIT plotters - serial port, parallel port, HPGL, 90 day tactory warranty, slightly used
Model 4550 - "A" size only $\mathbf{\$ 3 5 0 . 0 0}$
Model 4551 - "A" or "B" size - $\$ 45000$
FACIT Letter quality daisy wheel printers, serial interface. DIABLO emulation, 40 CPS, 90 day warranty, slightly used, model 4565, \$590
Model 4511-80 column size - $\$ \approx 50$
Model 4511 - 80 column size - $\$ 50$
Model 4512 - 132 column size - $\$ 450$
Call our bulletin board for details and other small quantity specials
We accept Mastercard and Visa CODs welcome Personal checis delay your order 30 days OR uritil you leare a message with us leã. ing the code number we put on the back of your check.

H4tRA

Ham Radio's guide to help you find your local

California

C \& A ROBERTS, INC.
18511 HAWTHORN BLVD. TORRANCE, CA 90504 213-370-7451
24 Hour: 800-421-2258
Not The Biggest, But The Best -
Since 1962
FONTANA ELECTRONICS
8628 SIERRA AVENUE
FONTANA, CA 92335
714-822-7710
714-822-7725
The Largest Electronics Dealer in San Bernardino County.

JUN'S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003
800-882-1343 Trades
Habla Espanol

Colorado

COLORADO COMM CENTER
4262 LOWELL BLVD.
DENVER, CO 80211
(303) 433-3355
(800) 227-7373

Stocking all major lines Kenwood Yaesu, Encomm, ICOM

Connecticut

HATRY ELECTRONICS

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford

Delaware

AMATEUR \& ADVANCED COMMUNI-

CATIONS

3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757

Delaware's Friendliest Ham Store.

DELAWARE AMATEUR SUPPLY

71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more. One mile off l-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY 1898 DREW STREET
CLEARWATER, FL 33575
813-461-4267
Clearwater Branch
West Coast's only full service
Amateur Radio Store.
Hours M-F 9-5:30, Sat. 9-3
AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE
ORLAND, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9-5:30, Sat. 9-3

Georgia

DOC'S COMMUNICATIONS

702 CHICKAMAUGA AVENUE
ROSSVILLE, GA 30741
(404) 866-2302

ICOM, Yaesu, Kenwood, KDK. Bird... 9AM-5:30PM
We service what we sell

Hawaii

HONOLULU ELECTRONICS
819 KEEAUMOKU STREET
HONOLULU, HI 96814
(808) 949-5564

Serving Hawaii \& Pacific area for 53 years.

Illinois

ERICKSON COMMUNICATIONS, INC. 5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon, Tu, Wed \& Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM STATION
220 N. FULTON AVE
P.O. BOX 4405

EVANSVILLE, IN 47710
812-422-023
1-800-523-773
Discount prices on Ten-Tec, Icom. Hy-Gain, MFJ, Yaesu, Kantronics,
Santec and others.

Massachusetts

James Millen Components by ANTENNAS ETC.
16 HANSOM ROAD
ANDOVER, MA 01810
617-475-7831
Bezels, binding posts, capacitors, condensers, chokes, coils, ceramics, H.V. connectors, plate caps, hardware knobs, dials, scopes and grid dippers. Inquire SASE or visit.

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3400
617-486-3040
The Ham Store of New England
You Can Rely On.

Michigan

ENCON PHOTOVOLTAICS
Complete Photovoltaic Systems
27600 Schoolcraft Rd
Livonia, Michigan 48150 313-523-1850
Amateur Radio, Repeaters, Satellite,
Computer applications
Call Paul WD8AHO

Minnesota

TNT RADIO SALES
4124 WEST BROADWAY
ROBBINSDALE, MN 55422 (MPLS/ST
PAUL)
TOLL FREE: (800) 328-0250
In Minn: (612) 535-5050
M-F 9 AM-6 PM
Sat 9 AM-5 PM
Ameritron, Bencher, Butternut, Icom,
Kenwood

Missouri

MISSOURI RADIO CENTER
102 NW BUSINESS PARK LANE
KANSAS CITY, MO 64150
(800) 821-7323

Missouri: (816) 741-8118
ICOM, Kenwood, Yaesu
Same day service, low prices.

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Dale Porray "Squeak," AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

New Jersey

KJI ELECTRONICS

66 SKYTOP ROAD
CEDAR GROVE, NJ 07009
(301) 239-4389

Gene K2KJI
Maryann K2RVH
Distributor of: KLM, Mirage, ICOM, Larsen, Lunar, Astron. Wholesale - retail.

Amateur Radio Dealer

New York

BARRY ELECTRONICS 512 BROADWAY NEW YORK, NY 10012 212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.
\section*{VHF COMMUNICATIONS}
915 NORTH MAIN STREET JAMESTOWN, NY 14701 716-664-6345 Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM "The World System." Western New York's finest Amateur dealer.

North Carolina

F \& M ELECTRONICS

3520 Rockingham Road
Greensboro, NC 27407
1-919-299-3437
9AM to 7PM Closed Monday
ICOM our specialty - Sales \& Service

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE.
WICKLIFFE, OH 44092 (Cleveland Area) 216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3

DEBCO ELECTRONICS, INC.

3931 EDWARDS RD.
CINCINNATI, OHIO 45209
(513) 531-4499

Mon-Sat 10AM-9PM
Sun 12-6PM
We buy and sell all types of electronic parts.

UNIVERSAL AMATEUR RADIO, INC.

 1280 AIDA DRIVEREYNOLDSBURG (COLUMBUS). OH 43068
614-866-4267
Featuring Kenwood, Yaesu, Icom, and other fine gear. Factory authorized sales and service. Shortwave specialists. Near 1-270 and airport.

Pennsylvania

HAMTRONICS,

DIV. OF TREVOSE ELECTRONICS

4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for over 30 Years

LaRUE ELECTRONICS

1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124
ICOM, Bird, Cushcraft, Beckman, Larsen, Amphenol, Astron, Belden, Antenna Specialists, W2AU/W2VS, Tokyo Hy-Power Labs, WELZ, Daiwa, Sony, Saxton, Vibroplex, Weller.

THE VHF SHOP

16 S. MOUNTAIN BLVD., RTE. 309
MOUNTAINTOP, PA 18707 717-474-9399
Lunar, Microwave Modules, ARCOS, Astron, KLM, Tama, Tonna-F9FT, UHF Units/Parabolic, Santec. Tokyo Hy-Power, Dentron, Mirage,
Amphenol, Belden

Texas

MADISON ELECTRONICS SUPPLY 3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE. WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9-5:30 Sat $9-3$

Electronic Repair Center

Servicing

Amateur
Commercial Radio
The most complete repair facility on the East Coast.
Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.

SEND US YOUR PROBLEMS

Servicing "Hams" for 30 years, no rig too old or new for us.

4033 Brownsville Road Trevose, Pa. 19047 215-357-1400

IF YOU'RE STILL USING AN
OLD STYLE ROTOR
CONTROL MAYBE YOU SHOULD CONSIDER THIS...

BUY THE ANTENNA
CONTROLLER
OF THE FUTURE
TODAY!

A PRO-SEARCHTw

DIGITAL

ANTENNA CONTROL FULLY COMPUTERIZED

SMALL
IN SIZE
$31 / 4 " H \times 5 \%$ "W $\times 6$ "D
10 MEMORIES
FOR STORING
YOUR FAVORITE HEADINGS
ONE YEAR FULL WARRANTY
PRO SEARCH Is Adaptable To Many Systems, Simple To Install.

No Modifications Are Necessary.

Presently we're having our Spring Special. A PSE-1, used with the CDE Series. Now only $\$ 299.95$ plus shipping. Regular retail price $\$ 419.91$. Offer good until June 15th, 1986. Order Early. We expect a back order problem due to demand and availability of parts. Also ask about our Spring Rotor, Antenna and Unit Special.

CALL NOW 1-800-325-4016

Controilers also avaitabie for other rotors
Prices and specitications subject to change without notice or obigation
US and foreign patents uncoud

Pro Search Eiecrronics Co 1344 Baur Bovievara St Louls Mo. 635^{2} 1.314994-7872

Uncle Ben says...

"l give you much more than just the lowest price...

When you get that exciting new piece of equipment from me, you know you are going to be completely happy...
I see to it, personally! I also give you earliest delivery, greatest trade-in allowances, my friendly assistance in every possible way.

Just ask any of the many thousands of hams all over the world who have been

"Uncle Ben" Snyder, W2SOH the head man of
"HAM HEADQUARTERS, USA ${ }^{\text {w }}$ " ...Since 1925! enjoying my friendly good service
for over a half a century.
73. Uncle Ben, W2SOH

- CALL ME...
(516) 293-7995 HARßISON HAS THEM ALL! KENWOOD

Kenwood TM-2570A

- WRITE ME...

For my prompt,

- SEE ME...

At one of the world's largest Ham Supply Centers!

Kenwood TH21AT, 31AT, 41AT

Kenwood TS-940S

Kenwood TS-711A (2m) TS-811A (70 cm)
Kenwood TR-2600, TR-3600

CHARGE IT!

IHE GUERRI REPORT by Ernie Guerri, W6MGI

analog vs. digital the difference blurs

It wasn't too long ago that the line between analog and digital operators (devices that perform functions in their respective domains) was easily distinguished. We accept the idea that analog functions have an "unlimited" number of steps and that digital functions are easily distinguished by the fact that the function takes place in discrete steps. But what do we really mean by "unlimited" or "discrete?" Well, it turns out that for most analog functions, the "limit" is set by the resolution of the relevant human sense - touch, smell, hearing, etc. But in reality we find that the presumption of a continuous gradient of sensory perception has its limits. The average eye can distinguish between 55 and 75 levels of gray. This means that 6-bit digitizers (64 shades) are all that is necessary to present an image that has appears to have continuous tones. This is well within the capabilities of today's digital techniques, and literally thousands of shades and colors are possible for even the most demanding visual applications such as computeraided design and engineering.
The same is true for the acoustic domain. Much professional recording is now done with equipment that converts the analog signal to a purely digital form. Because the digital signal has better "resolution" than the human ear, it's a simple matter to process the signal for noise reduction, echo, timbre, and other characteristics that would be nearly impossible to correct in analog form. The result is the splendid performance of compact disks and
the spectacular recordings possible with the 16 -bit pulse code modulation (PCM) adapters that are available for use with VCRs.
Similar strides are being made in the development of tactile and olfactory sensors and processors. The principal applications for these devices are as enhancements for robots on the factory floor. Digital signal processors, combined with motion controllers that "naturally" respond to digital signals (rather than analog signals) are soon to perform the most delicate human tasks, with significant improvement in repeatability. Reliability and availability are issues yet to be resolved. It may well be that as the level of robot complexity increases, the robots may also get "sick," but in ways we have yet to determine.

A practical application for the newest breed of digital signal processors will be the re-emergence of the picturephone. When the first Bell picturephone was implemented over 10 years ago, it offered only black and white images and was limited by a rather poor ability to transmit motion. (The bandwidth compression technique used at that time was called conditional replenishment - which meant that only the portions of the picture that had changed were transmitted.) Processing speed limitations kept the image from having the quality that consumers demanded, and, of course, color images were not available.

The same basic coding scheme is now being used by companies in both the United States and Japan to offer video teleconferencing in full-color motion over standard 56 -bit data lines. High-speed digital signal processing
chips, combined with some enhancements to the original replenishment scheme, have made the desired results possible at costs that are quite affordable for business applications.

microscope can "see" atoms

Researchers at IBM Laboratories in Switzerland are refining a recently developed technique that permits a scanning microscope to display the individual atoms of a surface structure. The device operates by scanning a very small probe a few atomic diameters above the surface. An electric field proportional to the distance between the probe and the surface is measured and converted to a visual "image" of the surface. Since the field is proportional to the square of the distance, surface characteristics are easily distinguished from background or "noise." The technique can be used in conjunction with other microscopy methods to serve as a magnifier or zoom device. Typical operation requires a few minutes to scan the surface under examination and produce a three-dimensional image of the atomic structure. Because most surfaces are not uniform for a distance of more than a few dozen atoms, the actual area scanned is quite small. This is not a real limitation, however, since the purpose of the device is extreme magnification of very specific features. The device will have special benefit for those who are working at the limits of semiconductor fabrication technology and are seeking to develop the smallest possible features or achieve the highest levels of integration.
ham radio

Official TAPR TNC-2 design
Top quality components throughout Standard AX. 25 Version 2 protocol Full duplex hardware HDLC

Five terminal data rates to 9600 baud Modem adaptable for HF packet 16 K battery backed-up RAM 32K EPROM, software clock Latest multiconnect software Five labeled LED status indicators Level 3 networking compatibility

- Choose CMOS version for low power (100ma typical) or NMOS for lower cost

Assembled and tested	CMOS - \$219.95 NMOS \$ $\$ 199.95$
Full kit with cabinet	CMOS - $\$ 169.95$ NMOS - \$ 154.95
Full kit without cabinet	CMOS - $\$ 144.95$ NMOS - \$ 129.95
Hard-to-find-parts kit	CMOS - $\$ 84.95$ NMOS - $\$ 79.95$
Bare PC board + assy	ual \$ 39.95
Reference manual (100	pg) \$ 9.95
Cabinet withend plates	\$ 29.95
Macintosh Owners: MACPACKET TNC200 gives pull-down menus, split screens, file transfers, automatic routing and more ${ }^{14}$ MACPACKET/TNC200 $\$ 69.95$	
Free UPS shipping in continental USA	
SEE US IN BOO AT THE DAYTON HA	TH 357 MVENTION

Discount 10% for orders of five or more TNC-200s to the same address

ORDER TOLL FREE (24 hours) 800-835-2246 ext. 115
(Kansas 800-362-2421 ext. 115)
Information 813-689-3523

(No COD)

Florida addresses add 5%
PAC.COMM PACKET RADIO SYSTEMS, INC. 4040 W, Kennedy Bivd, Tampa, FL 33609

ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page number and reader service number for each company advertising in this issue. To get more information on their advertised products, use the bind in card found elsewhere in this issue, select the correct reader service number from either the ad or this listing, check off the numbers, fill in your name and address, affix a postage stamp and return to us. We will promptly forward your request to the advertiser and your requested information should arrive shortly. If the card is missing, send all the pertinent information on a separate sheet of paper to: ham radio magazine, Attn: Reader Service, Greenville, NH 03048.
READER SERVICE I PAGE \boldsymbol{I}
149 Ace Communications, Inc. 74
107. Advanced Computer Controls, Inc. 13
185 Advanced Receiver Research 117
102 AEA 1
158 - All Electronics Corp 84
169 Alpha Detta Communications, Inc. 104, 105
Amateur Electronic Supoly 100
108 Amateur Wholesale Electronic 49
144 Amateur Wholesale Electronics 72
187 AMSAT 120
Antique Electronic Supply 109
165 ARRL 95
143 Aston Corp 68
116 Azotic Industries 30
Barker ef Williamson 57
Barry Electronics 102
127 R.H Bauman Sales 50
31 Bilal Company 55
147 . Buckmastor Publishing 111
133 . Burghardt Amateur Cent 56
Butternut Electronics 91
C.OM.B 45
164 . Coaxial Dynarnics, Inc. 95
195 Colorado Comm Center 127
153 Communications Concepts, Inc. 79
128 Communications Specialists 58
199 Connect Systems, Inc. 128
112 Crescent Radio 21
186 - CTM 120
Dayton Hamvention 103
161 DCC Data Service, Inc 91
Dick Smith Electronics 73
198 Digittex 127
125 Down East Microwave 50
168 - DX'ers Magazine, Gus Browning. W4BPD 102
179 EEB 113
124 EGE, Inc 50
191 - The Electronic Orphanage 121
Engineering Consuting 115
150-Exmet 74
Falcon Communications 74
123 Fox Intemational. Inc 50

- Fox Tango Corp 115

111. GLB Electronics 21
119 GLB Electronics 40
132 GLB Electronics 55
139 GLB Electronics 62
151 HiL Heaster, Inc. 74
121 Hat Communications Corp 41
126 Hall Electronics 50
141 Ham Radio Outer 64.65
Ham Radio's Bookstore 20. 20, 21, 54, 56, 57, 80The Ham Station.106
Hamtronics. NY 82
Harntronics. PA 123
184 Hamtronics, PA 116
193 - Harrison Radio 124
138 Heath Company 63
101 ICOM Anvetica, Inc Cover II
197 J.S Technology, Inc 127
156 Jun's Electronics 80
130 Kantronirs 65
135 Kantronics 57
142 Kendecom MCS 66

READER SERVICE

PAGE I

Trio Kenwood Communications 2.5, Cover IV
178. Larsen Antennas 111
122 - Madison Electronics Supply 46
175 Elaine Martin, Inc 109
189 - Glen Martin Engineering 121
145 MCM 73
104 Meadowlake Corp 12
103 MFJ Enterprises 8
113. Micto Supply Organization 22
114. Micro Supply Organization 23
105-Micro Systems Institute 12
160 - Minds Eye Publications. 91
136 Mirage Communications -15
154 Missouri Radio Cente 79
180 - Mosley Electronics 14
118. NGG Distributing Corp 37
134-Nemal Electronics62
173 - Omega Concepts 109
215. P.C. Electronics 29
194 - Pac Comm Packet Radio Systems, Inc. 126
177 - Pacific Rim Communications 111
192 Pro-Search 123
106 . Processor Concepts 73
190 OEP's 121
171 OSKY Publishing 106
172. R\&L Electronics 109
137. Radio Amateur Caltbook 63
163 Rarnsey Electronics. Inc 98
166-RF Parts/Westcom Eng 95
155 Roensch Microwave 80
152 Sartori Associates 74
219 Satellite Super Savers 119
Satman, Inc 16
109 Sommer 17
182 Spec Com. 114
110 - Spectrum International, Inc 20
170 Spi Ro Distributiog 106
129 - STV/OnSat Magazine 54
196 Sultronics 127
176 - Synthetic Textiles, Inc 111
181 TE Systems 114
183 TechMant 115
120 - Tel.Com 40
115 . Telewave, Inc 26
Ten-Tuc. 79
157 Transverters Unhmited. 81
University Microfilm Int 102
159 . Vanguard Lats 91
162 VHF Communications 91
218 W9INN Antennas 111
148 Webster Communications 73
146 Western Electronios

r 195

40m Phased Array -the Easy Way!

OPTI•PHASOR'" by BaileyTech

- Change direction instantly
- High F/B, adjustable phasing
- Low SWR over entire 40 m band
- Just 2 dipoles gives 4 db gain
$\$ 119.95 \begin{aligned} & \text { Also avalable mith matched } \\ & \text { dipoies and leed ines }\end{aligned}$
Check, MO, VISA, M/C
Call or Write for Complete Catalog.
TET Antennas, Larsen, Hy-Gain, Alpha Delta, etc.
SULTONOS
1587 U.S. 68 N Xenia, OH 45385
(513) 376-2700 \quad - 196

SAY YOU SAW IT IN HAM RADIO

now Sinad CAN be measured with YOUR VOM

- Quickly tune Receivers, Cavities, Preamps, etc.
- Works with your VOM or AC VTVM that has 2.5 V full scale sensitivity or better.
- Fast accurate measurements.
- Sinad measurement displayed on meter in "dB" scale.
- Self contained, pocket size, go anywhere instrument.
- Powered by standard 9 V battery or optional AC adaptor.

SINADAPTOR SAI-01 $\$ 79.95$
Please add $\$ 350$
shipping $\&$ handling
J.S. Technology, Inc.

39 Main Street
Scottsville, NY 14546
(716) 889-3048

POPULAR PA 19
 Wideband Preamp

- Over 8.000 sold since 1976
- $0.5-200 \mathrm{MHz}$ bandwidth
- 19 dB gain
- 50Ω in/output
- Increase sensitivity of receivers or counters
- Built, tested \& ready-to-g0 ONLY \$9.95 PPD

NEW POCKET SIZED 500 MHz Freq. Counter

- Compact design-pocket sized
- Measures frequency from 1 MHz to 500 MHz to within 1 kHz
- Built-in telescoping antenna
- Uses 1 standard 9 volt battery
- All units pre-tested and calibrated to . 001%
- Professional and dependable perfor mance at a low cost

ONLY \$49.95 PPD

DIGITREX

1005 BLOOMER
ROCHESTER, MI 48063
west coast distaibutor
R. LUKASZEWICZ

20610 aLAMINOS dRIVE SAUGUS, CA 91350 (805) 252-6021

April 1986 ITr 127

THINGS TO LOOK FOR (AND LOOK OUT FOR) IN A PHONE PATCH

- One year warranty.
- A patch should work with any radio. AM, FM, ACSB, relay switched or synthesized.
- Patch performance should not be dependent on the T/R speed of your radio.
- Your patch should sound just like your home phone.
- There should not be any sampling noises to distract you and rob important syllables. The best phone patches do not use the cheap sampling method. (Did you know that the competition uses VOX rather than sampling in their $\$ 1000$ commercial model?)
- A patch should disconnect automatically if the number dialed is busy.
- A patch should be flexible. You should be able to use it simplex, repeater aided simplex, or semi-duplex.
- A patch should allow you to manually connect any mobile or HT on your local repeater to the phone system for a fully automatic conversation. Someone may need to report an emergency!
- A patch should not become erratic when the mobile is noisy.
- You should be able to use a power amplifier on your base to extend range.
- You should be able to connect a patch to the MIC and EXT. speaker jack of your radio for a quick and effortless interface.
- You should be able to connect a patch to three points inside your radio (VOL high side, PTT, MIC) so that the patch does not interfere with the use of the radio and the VOL. and SQ. settings do not affect the patch.
- A patch should have MOV lightning protectors.
- Your patch should be made in the USA where consultation and factory service are immedately available. (Beware of an inferior offshore copy of our former PRIVATE PATCH II.)

ONLY
PRIVATE PATCH III GIVES YOU ALL OF THE ABOVE

PRIVATE PATCH III SIMPLEX SEMI-DUPLEX INTERCONNECT

The telephone is the most powerful mode of communications . PRIVATE PATCH III gives you full use of your home telephone fron your mobile and HT radios!

VOX . . . the right choice!
With only three simple connections to your base station radio, PRIVATE PATCH III will give you more communications power per dollar than you ever imagined possible.

Suddenly the utility of your radio is drastically increased. There are new sounds ... dial tones, ring tones, CW ID and the sound of voices you never expected to hear on your mobile or HT radio! What a convenience!

PRIVATE PATCH III frees you from memberships, cliques and other hassles common to many repeater autopatches. You can call who you want, when you want and for as long as you want. You can even receive your incoming calls!

VOX based phone patches offer many perfor mance and operational advantages over thi sampling method. These include operation through repeaters, compatibility with an radio, no lost words or syllables, greater rang ϵ smooth audio free of continual noise bursts etc., etc.
Most amateurs are not aware that the compet tion's top of the line patch is VOX based. (Yol know ... the $\$ 1000$ model they enthusiasticall call "our favorite commercial simplex patch on page 3 of their SP brochure.)
PRIVATE PATCH III offers about the sam capability, performance and features as the top model but is priced closer to their bottor of the line (SP) model!
So why settle for SP when top of the line cost little more?

To Learn more about PRIVATE PATCH III and the advantages of the VOX concept, call or write fc our four page brochure today!

PARTIAL LIST OF FEATURES

- OPERATES SIMPLEX, THROUGH REPEATERS, OR DUPLEX ON REPEATERS • VOX BASED - TOL RESTRICT (Digit counting and programmable first digit lockout) - SECRET CODE DISABLES TOL RESTRICT FOR ONE TOLL CALL-Automatic re-arm - AUTOMATIC BUSY SIGNAL DISCONNEC - CONTROL INTERRUPT TIMER (Maintains positive mobile control) - CW ID When you connect again c disconnect. Free ID chip. - SELECTABLE TONE OR PULSE DIALING • MOV LIGHTNING PROTECTORS THREE DIGIT ACCESS CODE (e.g. *91) - RINGOUT (Reverse patch) Ringout inhibit if channel bus - RESETTABLE THREE MINUTE TIMER • SPARE RELAY POSITION • 115VAC SUPPLY

DEALERS

Options:

FCC approved coupler
12 VDC or 230 VAC power

CONNECT
SYSTEMS
INCORPORATED

AMATEUR ELECTRONIC SUPPLY MADISON ELECTRONICS SUPF

Houston, TX
MIAMI RADIO CENTER CORP Miami FL
MIKES ELECTRONICS
F1. Lauderdale, Miami FL NsG DISTRIBUTING CORP. Miami FL
PACE ENGINEERING Tucson AZ
THE HAM STATION
Evansvilie IN
TEXAS TOWERS Plano, TX
tNT RADIO SALES
Robbinsdale, MN
WESTCOM
San Marcos. CA

CANADA:
DOLLARD ELECTRONICS
Vancouver, BC
SKYWAVE RADIO SYSTEMS, L Burnaby, B.C Milwaukee WI, Wickliffe Oh. Orlando FL, Clearwater FL. Las Vegas NV
BARRY ELECTRONICS CORP New York, NY
COLES COMMUNICATIONS San Antonio TX
EGE, INC.
Woodbridge, VA
ERICKSON COMMUNICATIONS Chicago IL
ham radio outlet Anaheim CA, Burlingame CA Oakland CA, Phoenix AZ. San Diego CA, Van Nuys CA
HENRY RADIO
Los Angeles CA
INTERNATIONAL RADIO
SYSTEMS
Miami, FL
JUNS ELECTRONICS
Culver City CA
(213)

Yaesu's big gun. The FT-980.

DX and contest operation is no place for a lightweight.

That's why the FT-980 combines the latest in HF technology to give you the muscle to get you through.

To begin with, its front panel givès you unsurpassed operating flexibility.

Store your favorite frequencies and operating mode independently in each of the 12 memory channels.

Review the contents of any memory location without disturbing the QSO in progress with the checking function.

Quickly go from one programmed channel to another: or meet your buddy "five up" by simply touching a button.

And you'll be hardpressed to find a cleaner transmitter: In fact, our conservatively designed final amplifier loafs at just a fraction of its rated output. And cuts distortion to new lows.

Then consider the receiver: A triple-conversion design with separate front ends for ham and general coverage reception. That way, ham-band operation is not compromised.

Also. cascaded IF filtering assures outstanding rejection of unwanted signals close to your operating frequency.

Even imperfect antennas are no problem for the FT-980. There's essentially no turndown with an SWR of $2: 1$ and just 25% turn-down at 3:1.

Finally, if all this isn't enough, hook up the FT-980 to your personal computer for 21 advanced functions including mode, frequency and band shift. An assortment of interfaces and software are available.

So when you really want to flex your muscles, go with Yaesu's FT-980. The serious radio for the serious operator:

YAESU

Our $30 t h$ Anmiversarty.

Yaesu USA

17210 Edwards Road. Certitas CA 9070) (213) $404-2700$

Yaesu Cincinnati Service Center

प्र)/0 Gold Park Drive. Hamilton OH 45011 (513) 874.3100

KENWOOD

"DX-citing!"

TS-440S Compact high performance HF transceiver with general coverage receiver

Kenwood's advanced digital know-how brings Amateurs world-wide "big-rig" performance in a compact package. We call it "Digital DX-citement"-that special feeling you get every time you turn the power on!

- Covers All Amateur bands

General coverage receiver tunes from $150 \mathrm{kHz}-30 \mathrm{MHz}$. Easily modified for HF MARS operation.

- Direct keyboard entry of frequency
- All modes built-in USB, LSB, CW, AM, FM. and AFSK. Mode selection is verified in Marse Code.
- Built-in automatic antenna tuner (optional) Covers 80-10 meters. - VS-1 voice synthesizer (optional)
- Superior receiver dynamic range Kenwood DynaMix ${ }^{\text {T}}$ high sensitivity direct mixing system ensures true 102 dB receiver dynamic range.
- 100\% duty cycle transmitter Super efficient cooling permits continuous key-down for periods exceeding one hour. RF input power is rated at 200 W PEP on SSB. 200 W DC on CW, AFSK. FM, and 110 W DC AM. (The heavy duty PS-50 power supply is needed for continuous duty.)
- 100 memory channels

Frequency and mode may be stored in 10 groups of 10 channels each. Split frequencies may be stored in 10 channels for repeater operation.

- TU-8 CTCSS unit (optional)

Subtone is memorized when TU-8 is installed.

- Superb interference reduction IF shift, tuneable notch filter, noise blanker, all-mode squelch, RF attenuator, RIT/XIT. and optional filters fight QRM in today's crowded bands.
- MC-42S UP/DOWN mic included
- Computer interface port
- 5 IF filter functions
- Dual SSB IF filtering A built-in SSB filter is standard. When an optional SSB filter (YK-88S or YK-88SN) is installed, dual filtering is provided.
- Full or semi break-in CW: AMTOR compatible.

Complete service manuals are available for all Tho Kerwood transceivers and most accessories Specifications ind pucentre subject to change without notice or obligation

TRIO-KENWOOD COMMUNICATIONS 1111 West Wainut Street Compton, California 90220

[^0]: *For information, contact Cardiff Publishing, 6530 South Yosemite Street, Englewood, Colorado 80111 (303-694-1522).

[^1]: IBH PC IBN XT AND IRN AT ARE RECISTEREO TRAOEMARKS OF internmtional businegs machines

[^2]: 1. Richard Measures, AG6K, " $3-500 \mathrm{Z}$ Tube Failure," ham radio, October, 1982, page 78.
[^3]: By Robert H. Fransen, VE6RF, 227 Cottonwood Avenue, Sherwood Park, Alberta, Canada T8A 1Y3

[^4]: *Available from Ham Radio's Bookstore: $\$ 9.95$ plus $\$ 3.50$ shipping and handling.

[^5]: EXCLUSIVE DISTRIBUTOR: DEALER INQUIRIES INVITED FOR YOUR NEAREST DEALER OR TO ORDER: AMATEUR-WHOLESALE ELECTRONICS TOLL FREE...800-327-3102
 8817 S.W. 129th Terrace, Miami, Florida 33176 Telephone (305) 233-3631 Telex: 80-3356

[^6]: 102 NW BUSINESS PARK LANE KANSAS CITY, MISSOURI 64150 816-741-8118
 CALL TOLL FREE
 1-800-821-7323
 MASTEACARD VISA \& CODS WELCOME

[^7]: *Toshiba is represented in the United States by Matcom, Inc., 450 San Antonio Road, Palo Alto, California 94036.
 **NEC is represented in the United States by Califor nia Eastern Labs, 3260 Jay Street, Santa Clara, Califor nia 95054

[^8]: 1. Chang-Hong Liang and David K. Cheng, "Directivity Optimization for YagiUda Arrays of Shaped Dipoles," IEEE Transactions on Antennas and Propagation, AP-31, Volume 31, No. 3, May, 1983, pages 522-525.
 2. F. M. Landstorfer, "A New Type of Directional Antenna," Antennas and Propagation Society International Symposium Digest, IEEE, 1976, pages 169-172.
 ham radio
[^9]:

